BrainForest:神经形态乘法器--低比特序列权重--内存优化的 1024 树脑状态分类处理器

Gerard OLeary, Jamie Koerner, Mustafa Kanchwala, Jose Sales Filho, Jianxiong Xu, Taufik A Valiante, Roman Genov
{"title":"BrainForest:神经形态乘法器--低比特序列权重--内存优化的 1024 树脑状态分类处理器","authors":"Gerard OLeary, Jamie Koerner, Mustafa Kanchwala, Jose Sales Filho, Jianxiong Xu, Taufik A Valiante, Roman Genov","doi":"10.1109/TBCAS.2024.3481160","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized brain implants have the potential to revolutionize the treatment of neurological disorders and augment cognition. Medical implants that deliver therapeutic stimulation in response to detected seizures have already been deployed for the treatment of epilepsy. These devices require low-power integrated circuits for life-long operation. This constraint impedes the integration of machine-learning driven classifiers that could improve treatment outcomes. This paper introduces BrainForest, a neuromorphic multiplier-less bit-serial weight-memory-optimized brain-state classification processor. The architecture achieves state-of-the-art energy efficiency using two layers of neuron models to implement the spectral and temporal functions needed for classification: 1) resonate-and-fire neurons are used to extract physiological signal band energy EEG biomarkers 2) leaky integrator neurons are used to build multi-timescale representations for classification. Sparse neural model firing activity is used to clock-gate device logic, thereby decreasing power consumption by 93%. An energy-optimized 1024-tree boosted decision forest performs the classification used to trigger stimulation in response to detected pathological brain states. The IC is implemented in 65nm CMOS with state-of-the-art power consumption (best case: 9.6μW, typical: 118μW), achieving a seizure sensitivity of 97.5% with a false detection rate of 2.08 per hour.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor.\",\"authors\":\"Gerard OLeary, Jamie Koerner, Mustafa Kanchwala, Jose Sales Filho, Jianxiong Xu, Taufik A Valiante, Roman Genov\",\"doi\":\"10.1109/TBCAS.2024.3481160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Personalized brain implants have the potential to revolutionize the treatment of neurological disorders and augment cognition. Medical implants that deliver therapeutic stimulation in response to detected seizures have already been deployed for the treatment of epilepsy. These devices require low-power integrated circuits for life-long operation. This constraint impedes the integration of machine-learning driven classifiers that could improve treatment outcomes. This paper introduces BrainForest, a neuromorphic multiplier-less bit-serial weight-memory-optimized brain-state classification processor. The architecture achieves state-of-the-art energy efficiency using two layers of neuron models to implement the spectral and temporal functions needed for classification: 1) resonate-and-fire neurons are used to extract physiological signal band energy EEG biomarkers 2) leaky integrator neurons are used to build multi-timescale representations for classification. Sparse neural model firing activity is used to clock-gate device logic, thereby decreasing power consumption by 93%. An energy-optimized 1024-tree boosted decision forest performs the classification used to trigger stimulation in response to detected pathological brain states. The IC is implemented in 65nm CMOS with state-of-the-art power consumption (best case: 9.6μW, typical: 118μW), achieving a seizure sensitivity of 97.5% with a false detection rate of 2.08 per hour.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3481160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3481160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

个性化脑部植入物有望彻底改变神经系统疾病的治疗方法,并增强认知能力。根据检测到的癫痫发作提供治疗性刺激的医疗植入体已被用于治疗癫痫。这些设备需要低功耗集成电路来实现终身运行。这种限制阻碍了机器学习驱动的分类器的集成,而机器学习驱动的分类器可以改善治疗效果。本文介绍的 BrainForest 是一种神经形态乘法器--无位串行权重内存优化脑状态分类处理器。该架构采用两层神经元模型来实现分类所需的频谱和时间函数,从而实现了最先进的能效:1)共振-发射神经元用于提取生理信号带能量脑电图生物标记;2)泄漏积分器神经元用于建立分类所需的多时间尺度表征。稀疏神经模型的发射活动被用于时钟门器件逻辑,从而将功耗降低了 93%。经过能量优化的 1024 树提升决策森林执行分类,用于根据检测到的大脑病理状态触发刺激。该集成电路采用 65nm CMOS 工艺实现,功耗达到最先进水平(最佳情况:9.6μW,典型情况:118μW),癫痫发作灵敏度达到 97.5%,错误检测率为每小时 2.08 次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor.

Personalized brain implants have the potential to revolutionize the treatment of neurological disorders and augment cognition. Medical implants that deliver therapeutic stimulation in response to detected seizures have already been deployed for the treatment of epilepsy. These devices require low-power integrated circuits for life-long operation. This constraint impedes the integration of machine-learning driven classifiers that could improve treatment outcomes. This paper introduces BrainForest, a neuromorphic multiplier-less bit-serial weight-memory-optimized brain-state classification processor. The architecture achieves state-of-the-art energy efficiency using two layers of neuron models to implement the spectral and temporal functions needed for classification: 1) resonate-and-fire neurons are used to extract physiological signal band energy EEG biomarkers 2) leaky integrator neurons are used to build multi-timescale representations for classification. Sparse neural model firing activity is used to clock-gate device logic, thereby decreasing power consumption by 93%. An energy-optimized 1024-tree boosted decision forest performs the classification used to trigger stimulation in response to detected pathological brain states. The IC is implemented in 65nm CMOS with state-of-the-art power consumption (best case: 9.6μW, typical: 118μW), achieving a seizure sensitivity of 97.5% with a false detection rate of 2.08 per hour.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1