{"title":"FR-CSG:快速可靠的建设性实体几何建模。","authors":"Jiaxi Chen, Zeyu Shen, Mingyang Zhao, Xiaohong Jia, Dong-Ming Yan, Wencheng Wang","doi":"10.1109/TVCG.2024.3481278","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstructing CSG trees from CAD models is a critical subject in reverse engineering. While there have been notable advancements in CSG reconstruction, challenges persist in capturing geometric details and achieving efficiency. Additionally, since non-axis-aligned volumetric primitives cannot maintain coplanar characteristics due to discretization errors, existing Boolean operations often lead to zero-volume surfaces and suffer from topological errors during the CSG modeling process. To address these issues, we propose a novel workflow to achieve fast CSG reconstruction and reliable forward modeling. First, we employ feature removal and model subdivision techniques to decompose models into sub-components. This significantly expedites the reconstruction by simplifying the complexity of the models. Then, we introduce a more reasonable method for primitive generation and filtering, and utilize a size-related optimization approach to reconstruct CSG trees. By re-adding features as additional nodes in the CSG trees, our method not only preserves intricate details but also ensures the conciseness, semantic integrity, and editability of the resulting CSG tree. Finally, we develop a coplanar primitive discretization method that represents primitives as large planes and extracts the original triangles after intersection. We extend the classification of triangles and incorporate a coplanar-aware Boolean tree assessment technique, allowing us to achieve manifold and watertight modeling results without zero-volume surfaces, even in extreme degenerate cases. We demonstrate the superiority of our method over state-of-the-art approaches. Moreover, the reconstructed CSG trees generated by our method contain extensive semantic information, enabling diverse model editing tasks.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FR-CSG: Fast and Reliable Modeling for Constructive Solid Geometry.\",\"authors\":\"Jiaxi Chen, Zeyu Shen, Mingyang Zhao, Xiaohong Jia, Dong-Ming Yan, Wencheng Wang\",\"doi\":\"10.1109/TVCG.2024.3481278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reconstructing CSG trees from CAD models is a critical subject in reverse engineering. While there have been notable advancements in CSG reconstruction, challenges persist in capturing geometric details and achieving efficiency. Additionally, since non-axis-aligned volumetric primitives cannot maintain coplanar characteristics due to discretization errors, existing Boolean operations often lead to zero-volume surfaces and suffer from topological errors during the CSG modeling process. To address these issues, we propose a novel workflow to achieve fast CSG reconstruction and reliable forward modeling. First, we employ feature removal and model subdivision techniques to decompose models into sub-components. This significantly expedites the reconstruction by simplifying the complexity of the models. Then, we introduce a more reasonable method for primitive generation and filtering, and utilize a size-related optimization approach to reconstruct CSG trees. By re-adding features as additional nodes in the CSG trees, our method not only preserves intricate details but also ensures the conciseness, semantic integrity, and editability of the resulting CSG tree. Finally, we develop a coplanar primitive discretization method that represents primitives as large planes and extracts the original triangles after intersection. We extend the classification of triangles and incorporate a coplanar-aware Boolean tree assessment technique, allowing us to achieve manifold and watertight modeling results without zero-volume surfaces, even in extreme degenerate cases. We demonstrate the superiority of our method over state-of-the-art approaches. Moreover, the reconstructed CSG trees generated by our method contain extensive semantic information, enabling diverse model editing tasks.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2024.3481278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3481278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FR-CSG: Fast and Reliable Modeling for Constructive Solid Geometry.
Reconstructing CSG trees from CAD models is a critical subject in reverse engineering. While there have been notable advancements in CSG reconstruction, challenges persist in capturing geometric details and achieving efficiency. Additionally, since non-axis-aligned volumetric primitives cannot maintain coplanar characteristics due to discretization errors, existing Boolean operations often lead to zero-volume surfaces and suffer from topological errors during the CSG modeling process. To address these issues, we propose a novel workflow to achieve fast CSG reconstruction and reliable forward modeling. First, we employ feature removal and model subdivision techniques to decompose models into sub-components. This significantly expedites the reconstruction by simplifying the complexity of the models. Then, we introduce a more reasonable method for primitive generation and filtering, and utilize a size-related optimization approach to reconstruct CSG trees. By re-adding features as additional nodes in the CSG trees, our method not only preserves intricate details but also ensures the conciseness, semantic integrity, and editability of the resulting CSG tree. Finally, we develop a coplanar primitive discretization method that represents primitives as large planes and extracts the original triangles after intersection. We extend the classification of triangles and incorporate a coplanar-aware Boolean tree assessment technique, allowing us to achieve manifold and watertight modeling results without zero-volume surfaces, even in extreme degenerate cases. We demonstrate the superiority of our method over state-of-the-art approaches. Moreover, the reconstructed CSG trees generated by our method contain extensive semantic information, enabling diverse model editing tasks.