为康复性生物识别(BCI)分辨简单手部运动任务的大脑和肌肉衍生特征:对健康人和中风后患者的比较研究。

Valeria de Seta, Emma Colamarino, Floriana Pichiorri, Giulia Savina, Francesca Patarini, Angela Riccio, Febo Cincotti, Donatella Mattia, Jlenia Toppi
{"title":"为康复性生物识别(BCI)分辨简单手部运动任务的大脑和肌肉衍生特征:对健康人和中风后患者的比较研究。","authors":"Valeria de Seta, Emma Colamarino, Floriana Pichiorri, Giulia Savina, Francesca Patarini, Angela Riccio, Febo Cincotti, Donatella Mattia, Jlenia Toppi","doi":"10.1088/1741-2552/ad8838","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Brain-Computer Interfaces targeting post-stroke recovery of the upper limb employ mainly electroencephalography to decode movement-related brain activation. Recently hybrid systems including muscular activity were introduced. We compared the motor task discrimination abilities of three different features, namely event-related desynchronization/synchronization (ERD/ERS) and movement-related cortical potential (MRCP) as brain-derived features and cortico-muscular coherence (CMC) as a hybrid brain-muscle derived feature, elicited in 13 healthy subjects and 13 stroke patients during the execution/attempt of two simple hand motor tasks (finger extension and grasping) commonly employed in upper limb rehabilitation protocols. &#xD;Approach. We employed a three-way statistical design to investigate whether their ability to discriminate the two movements follows a specific temporal evolution along the movement execution and is eventually different among the three features and between the two groups. We also investigated the differences in performance at the single-subject level.&#xD;Main results. The ERD/ERS and the CMC-based classification showed similar temporal evolutions of the performance with a significant increase in accuracy during the execution phase while MRCP-based accuracy peaked at movement onset. Such temporal dynamics were similar but slower in stroke patients when the movements were attempted with the affected hand. Moreover, CMC outperformed the two brain features in healthy subjects and stroke patients when performing the task with their unaffected hand, whereas a higher variability across subjects was observed in patients performing the tasks with their affected hand. Interestingly, brain features performed better in this latter condition with respect to healthy subjects. &#xD;Significance. Our results provide hints to improve the design of Brain-Computer Interfaces for post-stroke rehabilitation, emphasizing the need for personalized approaches tailored to patients' characteristics and to the intended rehabilitative target.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain and Muscle derived features to discriminate simple hand motor tasks for a rehabilitative BCI: comparative study on healthy and post-stroke individuals.\",\"authors\":\"Valeria de Seta, Emma Colamarino, Floriana Pichiorri, Giulia Savina, Francesca Patarini, Angela Riccio, Febo Cincotti, Donatella Mattia, Jlenia Toppi\",\"doi\":\"10.1088/1741-2552/ad8838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Brain-Computer Interfaces targeting post-stroke recovery of the upper limb employ mainly electroencephalography to decode movement-related brain activation. Recently hybrid systems including muscular activity were introduced. We compared the motor task discrimination abilities of three different features, namely event-related desynchronization/synchronization (ERD/ERS) and movement-related cortical potential (MRCP) as brain-derived features and cortico-muscular coherence (CMC) as a hybrid brain-muscle derived feature, elicited in 13 healthy subjects and 13 stroke patients during the execution/attempt of two simple hand motor tasks (finger extension and grasping) commonly employed in upper limb rehabilitation protocols. &#xD;Approach. We employed a three-way statistical design to investigate whether their ability to discriminate the two movements follows a specific temporal evolution along the movement execution and is eventually different among the three features and between the two groups. We also investigated the differences in performance at the single-subject level.&#xD;Main results. The ERD/ERS and the CMC-based classification showed similar temporal evolutions of the performance with a significant increase in accuracy during the execution phase while MRCP-based accuracy peaked at movement onset. Such temporal dynamics were similar but slower in stroke patients when the movements were attempted with the affected hand. Moreover, CMC outperformed the two brain features in healthy subjects and stroke patients when performing the task with their unaffected hand, whereas a higher variability across subjects was observed in patients performing the tasks with their affected hand. Interestingly, brain features performed better in this latter condition with respect to healthy subjects. &#xD;Significance. Our results provide hints to improve the design of Brain-Computer Interfaces for post-stroke rehabilitation, emphasizing the need for personalized approaches tailored to patients' characteristics and to the intended rehabilitative target.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad8838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad8838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:针对中风后上肢恢复的脑机接口主要采用脑电图来解码与运动相关的大脑激活。最近推出了包括肌肉活动在内的混合系统。我们比较了 13 名健康受试者和 13 名中风患者在执行/尝试上肢康复方案中常用的两项简单手部运动任务(伸指和抓握)时,三种不同特征的运动任务分辨能力,即作为脑源性特征的事件相关非同步化/同步化(ERD/ERS)和运动相关皮质电位(MRCP),以及作为脑-肌肉混合衍生特征的皮质-肌肉一致性(CMC)。我们采用了一种三向统计设计,以研究他们对这两种动作的分辨能力是否会随着动作执行过程的特定时间演变而变化,以及这三种特征之间和两组之间最终是否存在差异。我们还研究了单个被试水平上的表现差异。ERD/ERS 和基于 CMC 的分类表现出相似的时间变化,在动作执行阶段准确率显著提高,而基于 MRCP 的准确率在动作开始时达到峰值。中风患者在用患手尝试动作时,这种时间动态变化相似,但速度较慢。此外,健康受试者和中风患者在用未受影响的手执行任务时,CMC 的表现优于两种脑特征,而在用受影响的手执行任务时,受试者之间的变异性更高。有趣的是,脑特征在后一种情况下的表现优于健康受试者。我们的研究结果为改善脑卒中后康复的脑机接口设计提供了提示,强调了根据患者特征和预期康复目标量身定制个性化方法的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain and Muscle derived features to discriminate simple hand motor tasks for a rehabilitative BCI: comparative study on healthy and post-stroke individuals.

Objective: Brain-Computer Interfaces targeting post-stroke recovery of the upper limb employ mainly electroencephalography to decode movement-related brain activation. Recently hybrid systems including muscular activity were introduced. We compared the motor task discrimination abilities of three different features, namely event-related desynchronization/synchronization (ERD/ERS) and movement-related cortical potential (MRCP) as brain-derived features and cortico-muscular coherence (CMC) as a hybrid brain-muscle derived feature, elicited in 13 healthy subjects and 13 stroke patients during the execution/attempt of two simple hand motor tasks (finger extension and grasping) commonly employed in upper limb rehabilitation protocols. Approach. We employed a three-way statistical design to investigate whether their ability to discriminate the two movements follows a specific temporal evolution along the movement execution and is eventually different among the three features and between the two groups. We also investigated the differences in performance at the single-subject level. Main results. The ERD/ERS and the CMC-based classification showed similar temporal evolutions of the performance with a significant increase in accuracy during the execution phase while MRCP-based accuracy peaked at movement onset. Such temporal dynamics were similar but slower in stroke patients when the movements were attempted with the affected hand. Moreover, CMC outperformed the two brain features in healthy subjects and stroke patients when performing the task with their unaffected hand, whereas a higher variability across subjects was observed in patients performing the tasks with their affected hand. Interestingly, brain features performed better in this latter condition with respect to healthy subjects. Significance. Our results provide hints to improve the design of Brain-Computer Interfaces for post-stroke rehabilitation, emphasizing the need for personalized approaches tailored to patients' characteristics and to the intended rehabilitative target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temporal attention fusion network with custom loss function for EEG-fNIRS classification. Classification of hand movements from EEG using a FusionNet based LSTM network. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. Patient-specific visual neglect severity estimation for stroke patients with neglect using EEG. SSVEP modulation via non-volitional neurofeedback: An in silico proof of concept.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1