Monica Afonso, Francisco Sánchez-Cuesta, Yeray González-Zamorano, Juan Pablo Romero, Athanasios Vourvopoulos
{"title":"研究双侧经颅磁刺激和虚拟现实脑机接口训练对慢性中风患者的协同神经调节作用","authors":"Monica Afonso, Francisco Sánchez-Cuesta, Yeray González-Zamorano, Juan Pablo Romero, Athanasios Vourvopoulos","doi":"10.1088/1741-2552/ad8836","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Stroke is a major cause of adult disability worldwide, resulting in motor impairments. To regain motor function, patients undergo rehabilitation, typically involving repetitive movement training. For those who lack volitional movement, novel technology-based approaches have emerged that directly involve the central nervous system, through neuromodulation techniques such as transcranial magnetic stimulation (TMS), and closed-loop neurofeedback like brain-computer interfaces (BCIs). This, can be augmented through proprioceptive feedback delivered many times by embodied virtual reality (VR). Nonetheless, despite a growing body of research demonstrating the individual efficacy of each technique, there is limited information on their combined effects.<i>Approach.</i>In this study, we analyzed the Electroencephalographic (EEG) signals acquired from 10 patients with more than 4 months since stroke during a longitudinal intervention with repetitive TMS followed by VR-BCI training. From the EEG, the event related desynchronization (ERD) and individual alpha frequency (IAF) were extracted, evaluated over time and correlated with clinical outcome.<i>Main results.</i>Every patient's clinical outcome improved after treatment, and ERD magnitude increased during simultaneous rTMS and VR-BCI. Additionally, IAF values showed a significant correlation with clinical outcome, nonetheless, no relationship was found between differences in ERD pre- post- intervention with the clinical improvement.<i>Significance.</i>This study furnishes empirical evidence supporting the efficacy of the joint action of rTMS and VR-BCI in enhancing patient recovery. It also suggests a relationship between IAF and rehabilitation outcomes, that could potentially serve as a retrievable biomarker for stroke recovery.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the synergistic neuromodulation effect of bilateral rTMS and VR brain-computer interfaces training in chronic stroke patients.\",\"authors\":\"Monica Afonso, Francisco Sánchez-Cuesta, Yeray González-Zamorano, Juan Pablo Romero, Athanasios Vourvopoulos\",\"doi\":\"10.1088/1741-2552/ad8836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Stroke is a major cause of adult disability worldwide, resulting in motor impairments. To regain motor function, patients undergo rehabilitation, typically involving repetitive movement training. For those who lack volitional movement, novel technology-based approaches have emerged that directly involve the central nervous system, through neuromodulation techniques such as transcranial magnetic stimulation (TMS), and closed-loop neurofeedback like brain-computer interfaces (BCIs). This, can be augmented through proprioceptive feedback delivered many times by embodied virtual reality (VR). Nonetheless, despite a growing body of research demonstrating the individual efficacy of each technique, there is limited information on their combined effects.<i>Approach.</i>In this study, we analyzed the Electroencephalographic (EEG) signals acquired from 10 patients with more than 4 months since stroke during a longitudinal intervention with repetitive TMS followed by VR-BCI training. From the EEG, the event related desynchronization (ERD) and individual alpha frequency (IAF) were extracted, evaluated over time and correlated with clinical outcome.<i>Main results.</i>Every patient's clinical outcome improved after treatment, and ERD magnitude increased during simultaneous rTMS and VR-BCI. Additionally, IAF values showed a significant correlation with clinical outcome, nonetheless, no relationship was found between differences in ERD pre- post- intervention with the clinical improvement.<i>Significance.</i>This study furnishes empirical evidence supporting the efficacy of the joint action of rTMS and VR-BCI in enhancing patient recovery. It also suggests a relationship between IAF and rehabilitation outcomes, that could potentially serve as a retrievable biomarker for stroke recovery.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad8836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad8836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the synergistic neuromodulation effect of bilateral rTMS and VR brain-computer interfaces training in chronic stroke patients.
Objective.Stroke is a major cause of adult disability worldwide, resulting in motor impairments. To regain motor function, patients undergo rehabilitation, typically involving repetitive movement training. For those who lack volitional movement, novel technology-based approaches have emerged that directly involve the central nervous system, through neuromodulation techniques such as transcranial magnetic stimulation (TMS), and closed-loop neurofeedback like brain-computer interfaces (BCIs). This, can be augmented through proprioceptive feedback delivered many times by embodied virtual reality (VR). Nonetheless, despite a growing body of research demonstrating the individual efficacy of each technique, there is limited information on their combined effects.Approach.In this study, we analyzed the Electroencephalographic (EEG) signals acquired from 10 patients with more than 4 months since stroke during a longitudinal intervention with repetitive TMS followed by VR-BCI training. From the EEG, the event related desynchronization (ERD) and individual alpha frequency (IAF) were extracted, evaluated over time and correlated with clinical outcome.Main results.Every patient's clinical outcome improved after treatment, and ERD magnitude increased during simultaneous rTMS and VR-BCI. Additionally, IAF values showed a significant correlation with clinical outcome, nonetheless, no relationship was found between differences in ERD pre- post- intervention with the clinical improvement.Significance.This study furnishes empirical evidence supporting the efficacy of the joint action of rTMS and VR-BCI in enhancing patient recovery. It also suggests a relationship between IAF and rehabilitation outcomes, that could potentially serve as a retrievable biomarker for stroke recovery.