Yang Qu, Yiming Zhang, Boyuan Huang, Cheng Chen, Huacen Wang, Sicong Liu, Hongqiang Wang
{"title":"利用水氨气液平衡时的蒸汽压力驱动的无泵气动执行器。","authors":"Yang Qu, Yiming Zhang, Boyuan Huang, Cheng Chen, Huacen Wang, Sicong Liu, Hongqiang Wang","doi":"10.1089/soro.2023.0067","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, pneumatic soft actuators are widely used due to their impressive adaptability, but they still face challenges for more extensive practical applications. One of the primary issues is the bulky and noisy air compressors required to generate air pressure. To circumvent this critical problem, this work proposes a new type of air pressure source, based on the vapor pressure at the gas-liquid equilibrium to replace conventional air pumps. Compared with the previous phase transition method, this approach gains advantages such as generating gas even at low temperatures (instead of boiling point), more controllable gas output, and higher force density (since both ammonia and water contribute to the gas pressure). This work built mathematical models to explain the mechanism of converting energy to output action force from electrical energy and found the aqua ammonia system is one of the optimal choices. Multiple prototypes were created to demonstrate the capability of this method, including a pouch actuator that pushed a load 20,555 times heavier than its dead weight. Finally, based on the soft actuator, an untethered crawling robot was implemented with onboard batteries, showing the potentially extensive applications of this methodology.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pump-Free Pneumatic Actuator Driven by the Vapor Pressure at the Gas-Liquid Equilibrium of Aqua Ammonia.\",\"authors\":\"Yang Qu, Yiming Zhang, Boyuan Huang, Cheng Chen, Huacen Wang, Sicong Liu, Hongqiang Wang\",\"doi\":\"10.1089/soro.2023.0067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, pneumatic soft actuators are widely used due to their impressive adaptability, but they still face challenges for more extensive practical applications. One of the primary issues is the bulky and noisy air compressors required to generate air pressure. To circumvent this critical problem, this work proposes a new type of air pressure source, based on the vapor pressure at the gas-liquid equilibrium to replace conventional air pumps. Compared with the previous phase transition method, this approach gains advantages such as generating gas even at low temperatures (instead of boiling point), more controllable gas output, and higher force density (since both ammonia and water contribute to the gas pressure). This work built mathematical models to explain the mechanism of converting energy to output action force from electrical energy and found the aqua ammonia system is one of the optimal choices. Multiple prototypes were created to demonstrate the capability of this method, including a pouch actuator that pushed a load 20,555 times heavier than its dead weight. Finally, based on the soft actuator, an untethered crawling robot was implemented with onboard batteries, showing the potentially extensive applications of this methodology.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pump-Free Pneumatic Actuator Driven by the Vapor Pressure at the Gas-Liquid Equilibrium of Aqua Ammonia.
Currently, pneumatic soft actuators are widely used due to their impressive adaptability, but they still face challenges for more extensive practical applications. One of the primary issues is the bulky and noisy air compressors required to generate air pressure. To circumvent this critical problem, this work proposes a new type of air pressure source, based on the vapor pressure at the gas-liquid equilibrium to replace conventional air pumps. Compared with the previous phase transition method, this approach gains advantages such as generating gas even at low temperatures (instead of boiling point), more controllable gas output, and higher force density (since both ammonia and water contribute to the gas pressure). This work built mathematical models to explain the mechanism of converting energy to output action force from electrical energy and found the aqua ammonia system is one of the optimal choices. Multiple prototypes were created to demonstrate the capability of this method, including a pouch actuator that pushed a load 20,555 times heavier than its dead weight. Finally, based on the soft actuator, an untethered crawling robot was implemented with onboard batteries, showing the potentially extensive applications of this methodology.