{"title":"人工植被改善退化山坡高山草甸的土壤保水和蓄水能力","authors":"Yulei Ma, Lingchao Meng, Yifan Liu, Juan Pinos, Zhihua Shi, Gao-Lin Wu","doi":"10.1002/ldr.5349","DOIUrl":null,"url":null,"abstract":"The crucial role of soil water retention and storage in soil hydrology and the water cycle is well established. However, in sensitive and degraded ecosystems like alpine meadows, the effectiveness of revegetation in enhancing these critical functions remains understudied. This study investigates the effects of revegetating severely degraded hillside meadows with artificial grasslands on soil water retention and storage capacity in the Qinghai-Tibetan Plateau. Soil analyses at a depth of 0–20 cm revealed significant improvements in soil properties after revegetation, with increases in soil organic matter content (86.8%), total porosity (11.9%), capillary porosity (31.6%), and clay content (13.5%). Both the saturated hydraulic conductivity (<i>Ks</i>) and field capacity (FC) increased markedly, by 9.7% and 63.7% in the upper layer (0–10 cm) and 21.7% and 69.6% in the lower layer (10–20 cm), respectively. Structural equation modeling identified bulk density, root mass density, FC, capillary porosity, and clay content as the dominant direct factors influencing <i>Ks</i> with path coefficients of −0.56, 0.30, −0.53, 0.57, and −0.12, respectively, while vegetation cover and aboveground biomass were found to have indirect influences. These findings demonstrate that revegetation with artificial grasslands effectively improves soil water retention and storage capacity in degraded hillside alpine meadows by regulating key soil hydraulic and physical properties. This enhanced water-holding capacity has significant implications for understanding the dynamics of revegetation by artificial grassland establishment in improving ecosystem health and eco-hydrological functions in these vulnerable environments. Furthermore, the study provides valuable insights and a theoretical basis for developing ecological restoration solutions for degraded hillside meadows in other alpine regions.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"40 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Grassland Revegetation Improves Soil Water Retention and Storage Capacity of the Degraded Hillside Alpine Meadow\",\"authors\":\"Yulei Ma, Lingchao Meng, Yifan Liu, Juan Pinos, Zhihua Shi, Gao-Lin Wu\",\"doi\":\"10.1002/ldr.5349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crucial role of soil water retention and storage in soil hydrology and the water cycle is well established. However, in sensitive and degraded ecosystems like alpine meadows, the effectiveness of revegetation in enhancing these critical functions remains understudied. This study investigates the effects of revegetating severely degraded hillside meadows with artificial grasslands on soil water retention and storage capacity in the Qinghai-Tibetan Plateau. Soil analyses at a depth of 0–20 cm revealed significant improvements in soil properties after revegetation, with increases in soil organic matter content (86.8%), total porosity (11.9%), capillary porosity (31.6%), and clay content (13.5%). Both the saturated hydraulic conductivity (<i>Ks</i>) and field capacity (FC) increased markedly, by 9.7% and 63.7% in the upper layer (0–10 cm) and 21.7% and 69.6% in the lower layer (10–20 cm), respectively. Structural equation modeling identified bulk density, root mass density, FC, capillary porosity, and clay content as the dominant direct factors influencing <i>Ks</i> with path coefficients of −0.56, 0.30, −0.53, 0.57, and −0.12, respectively, while vegetation cover and aboveground biomass were found to have indirect influences. These findings demonstrate that revegetation with artificial grasslands effectively improves soil water retention and storage capacity in degraded hillside alpine meadows by regulating key soil hydraulic and physical properties. This enhanced water-holding capacity has significant implications for understanding the dynamics of revegetation by artificial grassland establishment in improving ecosystem health and eco-hydrological functions in these vulnerable environments. Furthermore, the study provides valuable insights and a theoretical basis for developing ecological restoration solutions for degraded hillside meadows in other alpine regions.\",\"PeriodicalId\":203,\"journal\":{\"name\":\"Land Degradation & Development\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Degradation & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ldr.5349\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5349","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Artificial Grassland Revegetation Improves Soil Water Retention and Storage Capacity of the Degraded Hillside Alpine Meadow
The crucial role of soil water retention and storage in soil hydrology and the water cycle is well established. However, in sensitive and degraded ecosystems like alpine meadows, the effectiveness of revegetation in enhancing these critical functions remains understudied. This study investigates the effects of revegetating severely degraded hillside meadows with artificial grasslands on soil water retention and storage capacity in the Qinghai-Tibetan Plateau. Soil analyses at a depth of 0–20 cm revealed significant improvements in soil properties after revegetation, with increases in soil organic matter content (86.8%), total porosity (11.9%), capillary porosity (31.6%), and clay content (13.5%). Both the saturated hydraulic conductivity (Ks) and field capacity (FC) increased markedly, by 9.7% and 63.7% in the upper layer (0–10 cm) and 21.7% and 69.6% in the lower layer (10–20 cm), respectively. Structural equation modeling identified bulk density, root mass density, FC, capillary porosity, and clay content as the dominant direct factors influencing Ks with path coefficients of −0.56, 0.30, −0.53, 0.57, and −0.12, respectively, while vegetation cover and aboveground biomass were found to have indirect influences. These findings demonstrate that revegetation with artificial grasslands effectively improves soil water retention and storage capacity in degraded hillside alpine meadows by regulating key soil hydraulic and physical properties. This enhanced water-holding capacity has significant implications for understanding the dynamics of revegetation by artificial grassland establishment in improving ecosystem health and eco-hydrological functions in these vulnerable environments. Furthermore, the study provides valuable insights and a theoretical basis for developing ecological restoration solutions for degraded hillside meadows in other alpine regions.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.