Pramod Sivan, János Urbancsok, Evgeniy N. Donev, Marta Derba-Maceluch, Félix R. Barbut, Zakiya Yassin, Madhavi L. Gandla, Madhusree Mitra, Saara E. Heinonen, Jan Šimura, Kateřina Cermanová, Michal Karady, Gerhard Scheepers, Leif J. Jönsson, Emma R. Master, Francisco Vilaplana, Ewa J. Mellerowicz
{"title":"改变次生壁中的木聚糖可改变细胞壁生物合成和木材形成程序,并提高糖化效果","authors":"Pramod Sivan, János Urbancsok, Evgeniy N. Donev, Marta Derba-Maceluch, Félix R. Barbut, Zakiya Yassin, Madhavi L. Gandla, Madhusree Mitra, Saara E. Heinonen, Jan Šimura, Kateřina Cermanová, Michal Karady, Gerhard Scheepers, Leif J. Jönsson, Emma R. Master, Francisco Vilaplana, Ewa J. Mellerowicz","doi":"10.1111/pbi.14487","DOIUrl":null,"url":null,"abstract":"Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from <i>Aspergillus nidulans</i> in hybrid aspen (<i>Populus tremula</i> L. × <i>tremuloides</i> Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"201 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification\",\"authors\":\"Pramod Sivan, János Urbancsok, Evgeniy N. Donev, Marta Derba-Maceluch, Félix R. Barbut, Zakiya Yassin, Madhavi L. Gandla, Madhusree Mitra, Saara E. Heinonen, Jan Šimura, Kateřina Cermanová, Michal Karady, Gerhard Scheepers, Leif J. Jönsson, Emma R. Master, Francisco Vilaplana, Ewa J. Mellerowicz\",\"doi\":\"10.1111/pbi.14487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from <i>Aspergillus nidulans</i> in hybrid aspen (<i>Populus tremula</i> L. × <i>tremuloides</i> Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\"201 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.14487\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14487","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
阔叶树种的木材是生物精炼的重要可再生生物质来源,也是基因改良以降低其再抗性的目标。葡萄糖醛酸聚糖(GX)通过与纤维素和木质素的相互作用,在再抗性中发挥着关键作用。为了减少再抗性,我们在杂交杨树(Populus tremula L. × tremuloides Michx.)木聚糖酶降低了树高,通过增加韧皮部生产和减少木质部生产改变了韧皮部活动,并减少了次生壁沉积。转基因品系的木聚糖分子量降低,乙酰基和 MeGlcA 侧链之间的间距缩小。转基因树产生的木质部木质化程度低,次生壁薄,血管变形。未经预处理的酶法糖化葡萄糖产量几乎翻了一番,表明抗逆性降低。转录组学、激素组学和代谢组学数据证明了细胞分裂素和乙烯信号通路的激活、ABA 水平的降低、木质化转录抑制和次生壁生物合成程序子集,包括木聚糖葡萄糖醛酸化和乙酰化机制。研究发现了一些感知木聚糖完整性受损的候选基因。这些候选基因可为解除负生长效应与抗逆性降低之间的联系提供新的靶标。总之,我们的研究支持了木聚糖修饰产生内在信号并唤起调节树木生长和次生壁生物合成的新途径的假设。
Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification
Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from Aspergillus nidulans in hybrid aspen (Populus tremula L. × tremuloides Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.