Christina Jörg, Marius Jürgensen, Sebabrata Mukherjee, Mikael C. Rechtsman
{"title":"通过在一维晶格中形成孤子实现拓扑终态的光学控制","authors":"Christina Jörg, Marius Jürgensen, Sebabrata Mukherjee, Mikael C. Rechtsman","doi":"10.1515/nanoph-2024-0401","DOIUrl":null,"url":null,"abstract":"Discrete spatial solitons are self-consistent solutions of the discrete nonlinear Schrödinger equation that maintain their shape during propagation. Here we show, using a pump-probe technique, that soliton formation can be used to optically induce and control a linear topological end state in the bulk of a Su–Schrieffer–Heeger lattice, using evanescently-coupled waveguide arrays. Specifically, we observe an abrupt nonlinearly-induced transition above a certain power threshold due to an inversion symmetry-breaking nonlinear bifurcation. Our results demonstrate all-optical active control of topological states.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"222 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical control of topological end states via soliton formation in a 1D lattice\",\"authors\":\"Christina Jörg, Marius Jürgensen, Sebabrata Mukherjee, Mikael C. Rechtsman\",\"doi\":\"10.1515/nanoph-2024-0401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete spatial solitons are self-consistent solutions of the discrete nonlinear Schrödinger equation that maintain their shape during propagation. Here we show, using a pump-probe technique, that soliton formation can be used to optically induce and control a linear topological end state in the bulk of a Su–Schrieffer–Heeger lattice, using evanescently-coupled waveguide arrays. Specifically, we observe an abrupt nonlinearly-induced transition above a certain power threshold due to an inversion symmetry-breaking nonlinear bifurcation. Our results demonstrate all-optical active control of topological states.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"222 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0401\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical control of topological end states via soliton formation in a 1D lattice
Discrete spatial solitons are self-consistent solutions of the discrete nonlinear Schrödinger equation that maintain their shape during propagation. Here we show, using a pump-probe technique, that soliton formation can be used to optically induce and control a linear topological end state in the bulk of a Su–Schrieffer–Heeger lattice, using evanescently-coupled waveguide arrays. Specifically, we observe an abrupt nonlinearly-induced transition above a certain power threshold due to an inversion symmetry-breaking nonlinear bifurcation. Our results demonstrate all-optical active control of topological states.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.