{"title":"IgE 介导 FcεRI 激活的分子机制","authors":"Mengying Chen, Qiang Su, Yigong Shi","doi":"10.1038/s41586-024-08229-8","DOIUrl":null,"url":null,"abstract":"<p>Allergic diseases, affecting over a quarter of individuals in industrialized countries, have become significant public health concerns<sup>1,2</sup>. The high-affinity Fc receptor for IgE (FcεRI), mainly present on mast cells and basophils, plays a crucial role in allergic diseases<sup>3-5</sup>. Monomeric IgE binding to FcεRI regulates mast cell survival, differentiation, and maturation<sup>6-8</sup>. However, the underlying molecular mechanism remains unclear. Here we demonstrate that, prior to IgE binding, FcεRI mostly exists as a homo-dimer on human mast cell membrane. The structure of human FcεRI confirms the dimeric organization, with each promoter comprising one α subunit, one β subunit, and two γ subunits. The transmembrane helices of the α subunits form a layered arrangement with those of the γ and β subunits. The dimeric interface is mediated by a four-helix bundle of the α and γ subunits at the intracellular juxtamembrane region. Cholesterol-like molecules embedded within the transmembrane domain may stabilize the dimeric assembly. Upon IgE binding, the dimeric FcεRI dissociates into two protomers, each binding to an IgE molecule. Importantly, this process elicits transcriptional activation of <i>Egr1/3</i> and <i>Ccl2</i> in rat basophils, which can be attenuated by inhibiting the FcεRI dimer-to-monomer transition. Collectively, our study unveils the mechanism of antigen-independent, IgE-mediated FcεRI activation.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"125 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanism of IgE-mediated FcεRI activation\",\"authors\":\"Mengying Chen, Qiang Su, Yigong Shi\",\"doi\":\"10.1038/s41586-024-08229-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Allergic diseases, affecting over a quarter of individuals in industrialized countries, have become significant public health concerns<sup>1,2</sup>. The high-affinity Fc receptor for IgE (FcεRI), mainly present on mast cells and basophils, plays a crucial role in allergic diseases<sup>3-5</sup>. Monomeric IgE binding to FcεRI regulates mast cell survival, differentiation, and maturation<sup>6-8</sup>. However, the underlying molecular mechanism remains unclear. Here we demonstrate that, prior to IgE binding, FcεRI mostly exists as a homo-dimer on human mast cell membrane. The structure of human FcεRI confirms the dimeric organization, with each promoter comprising one α subunit, one β subunit, and two γ subunits. The transmembrane helices of the α subunits form a layered arrangement with those of the γ and β subunits. The dimeric interface is mediated by a four-helix bundle of the α and γ subunits at the intracellular juxtamembrane region. Cholesterol-like molecules embedded within the transmembrane domain may stabilize the dimeric assembly. Upon IgE binding, the dimeric FcεRI dissociates into two protomers, each binding to an IgE molecule. Importantly, this process elicits transcriptional activation of <i>Egr1/3</i> and <i>Ccl2</i> in rat basophils, which can be attenuated by inhibiting the FcεRI dimer-to-monomer transition. Collectively, our study unveils the mechanism of antigen-independent, IgE-mediated FcεRI activation.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-024-08229-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08229-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Molecular mechanism of IgE-mediated FcεRI activation
Allergic diseases, affecting over a quarter of individuals in industrialized countries, have become significant public health concerns1,2. The high-affinity Fc receptor for IgE (FcεRI), mainly present on mast cells and basophils, plays a crucial role in allergic diseases3-5. Monomeric IgE binding to FcεRI regulates mast cell survival, differentiation, and maturation6-8. However, the underlying molecular mechanism remains unclear. Here we demonstrate that, prior to IgE binding, FcεRI mostly exists as a homo-dimer on human mast cell membrane. The structure of human FcεRI confirms the dimeric organization, with each promoter comprising one α subunit, one β subunit, and two γ subunits. The transmembrane helices of the α subunits form a layered arrangement with those of the γ and β subunits. The dimeric interface is mediated by a four-helix bundle of the α and γ subunits at the intracellular juxtamembrane region. Cholesterol-like molecules embedded within the transmembrane domain may stabilize the dimeric assembly. Upon IgE binding, the dimeric FcεRI dissociates into two protomers, each binding to an IgE molecule. Importantly, this process elicits transcriptional activation of Egr1/3 and Ccl2 in rat basophils, which can be attenuated by inhibiting the FcεRI dimer-to-monomer transition. Collectively, our study unveils the mechanism of antigen-independent, IgE-mediated FcεRI activation.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.