{"title":"具有双相异质结构的共晶高熵合金在室温和低温下的超高强度和韧性","authors":"Xiangkui Liu, Jingying Liu, Chenglong Zhou, Weixia Dong, Xuecong Zhang, Qianye Wang, Huiqing Xu, Xulong An, Dandan Wang, Wei Wei, Zhenfei Jiang","doi":"10.1016/j.jmst.2024.10.008","DOIUrl":null,"url":null,"abstract":"Here, we architected a duplex heterostructure with FCC/L1<sub>2</sub> and B2 phases in Ni<sub>49</sub>Fe<sub>28</sub>Al<sub>17</sub>V<sub>6</sub> eutectic high-entropy alloy (EHEA) by thermal-mechanical process. Ultra-high yield strength of ∼1550 MPa, high tensile strength of ∼1772 MPa and good ductility of ∼16.5% at room temperature (298 K) were exhibited. Particularly, ultra-high yield strength of ∼1877 MPa, ultra-high tensile strength of ∼2157 MPa and uniform elongation of ∼10% were achieved at cryogenic temperature (77 K). Such excellent room-temperature mechanical properties are attributed to the hetero-deformation induced (HDI) hardening. Ultrahigh cryogenic-temperature strength originates from not only HDI hardening, but also the strong interaction of deformation twins and high-density dislocations.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-high strength and ductility of eutectic high-entropy alloy with duplex heterostructure at room and cryogenic temperatures\",\"authors\":\"Xiangkui Liu, Jingying Liu, Chenglong Zhou, Weixia Dong, Xuecong Zhang, Qianye Wang, Huiqing Xu, Xulong An, Dandan Wang, Wei Wei, Zhenfei Jiang\",\"doi\":\"10.1016/j.jmst.2024.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we architected a duplex heterostructure with FCC/L1<sub>2</sub> and B2 phases in Ni<sub>49</sub>Fe<sub>28</sub>Al<sub>17</sub>V<sub>6</sub> eutectic high-entropy alloy (EHEA) by thermal-mechanical process. Ultra-high yield strength of ∼1550 MPa, high tensile strength of ∼1772 MPa and good ductility of ∼16.5% at room temperature (298 K) were exhibited. Particularly, ultra-high yield strength of ∼1877 MPa, ultra-high tensile strength of ∼2157 MPa and uniform elongation of ∼10% were achieved at cryogenic temperature (77 K). Such excellent room-temperature mechanical properties are attributed to the hetero-deformation induced (HDI) hardening. Ultrahigh cryogenic-temperature strength originates from not only HDI hardening, but also the strong interaction of deformation twins and high-density dislocations.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.10.008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultra-high strength and ductility of eutectic high-entropy alloy with duplex heterostructure at room and cryogenic temperatures
Here, we architected a duplex heterostructure with FCC/L12 and B2 phases in Ni49Fe28Al17V6 eutectic high-entropy alloy (EHEA) by thermal-mechanical process. Ultra-high yield strength of ∼1550 MPa, high tensile strength of ∼1772 MPa and good ductility of ∼16.5% at room temperature (298 K) were exhibited. Particularly, ultra-high yield strength of ∼1877 MPa, ultra-high tensile strength of ∼2157 MPa and uniform elongation of ∼10% were achieved at cryogenic temperature (77 K). Such excellent room-temperature mechanical properties are attributed to the hetero-deformation induced (HDI) hardening. Ultrahigh cryogenic-temperature strength originates from not only HDI hardening, but also the strong interaction of deformation twins and high-density dislocations.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.