{"title":"普鲁士蓝及其类似物的电子结构调制:从能源相关催化的角度看进展与挑战","authors":"Baghendra Singh , Yogita Arya , Goutam Kumar Lahiri , Arindam Indra","doi":"10.1016/j.ccr.2024.216288","DOIUrl":null,"url":null,"abstract":"<div><div>Prussian blue, a more than three hundred years old inorganic coordination polymer, has drawn immense interest in the field of energy conversion. Prussian blue (PB) and Prussian blue analogs (PBAs) have been extensively used for water oxidation, hydrogen evolution, oxygen reduction, nitrogen reduction reaction, etc. In addition, PB and PBAs were explored as the cocatalysts for photocatalytic and photoelectrochemical energy conversion processes. Although initial studies focused on the development of morphology, porosity, surface area, accessible catalytic sites, core-shell structure, etc., the tuning of the electronic structure was found to largely influence the electrochemical features of PB and PBAs. The inter-valence charge transport in PB and PBAs through the –CN bridge can also be modulated by altering the electronic structure of the metal sites. This, in turn, offers a significant modification of its properties as a cocatalyst when combined with a semiconductor. The present review article addresses the effect of electronic structural modulation in PB and PBAs to improve its electrocatalytic and cocatalytic activities. The recent achievements and challenges in designing PBAs and their application in energy conversion have been highlighted along with potential future advancements. Special emphasis has been given to understanding structural aspects and the subsequent establishment of a structure-activity relationship for energy conversion processes.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"523 ","pages":"Article 216288"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic structure modulation in Prussian blue and its analogs: Progress and challenges in perspective of energy-related catalysis\",\"authors\":\"Baghendra Singh , Yogita Arya , Goutam Kumar Lahiri , Arindam Indra\",\"doi\":\"10.1016/j.ccr.2024.216288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prussian blue, a more than three hundred years old inorganic coordination polymer, has drawn immense interest in the field of energy conversion. Prussian blue (PB) and Prussian blue analogs (PBAs) have been extensively used for water oxidation, hydrogen evolution, oxygen reduction, nitrogen reduction reaction, etc. In addition, PB and PBAs were explored as the cocatalysts for photocatalytic and photoelectrochemical energy conversion processes. Although initial studies focused on the development of morphology, porosity, surface area, accessible catalytic sites, core-shell structure, etc., the tuning of the electronic structure was found to largely influence the electrochemical features of PB and PBAs. The inter-valence charge transport in PB and PBAs through the –CN bridge can also be modulated by altering the electronic structure of the metal sites. This, in turn, offers a significant modification of its properties as a cocatalyst when combined with a semiconductor. The present review article addresses the effect of electronic structural modulation in PB and PBAs to improve its electrocatalytic and cocatalytic activities. The recent achievements and challenges in designing PBAs and their application in energy conversion have been highlighted along with potential future advancements. Special emphasis has been given to understanding structural aspects and the subsequent establishment of a structure-activity relationship for energy conversion processes.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"523 \",\"pages\":\"Article 216288\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524006349\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524006349","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Electronic structure modulation in Prussian blue and its analogs: Progress and challenges in perspective of energy-related catalysis
Prussian blue, a more than three hundred years old inorganic coordination polymer, has drawn immense interest in the field of energy conversion. Prussian blue (PB) and Prussian blue analogs (PBAs) have been extensively used for water oxidation, hydrogen evolution, oxygen reduction, nitrogen reduction reaction, etc. In addition, PB and PBAs were explored as the cocatalysts for photocatalytic and photoelectrochemical energy conversion processes. Although initial studies focused on the development of morphology, porosity, surface area, accessible catalytic sites, core-shell structure, etc., the tuning of the electronic structure was found to largely influence the electrochemical features of PB and PBAs. The inter-valence charge transport in PB and PBAs through the –CN bridge can also be modulated by altering the electronic structure of the metal sites. This, in turn, offers a significant modification of its properties as a cocatalyst when combined with a semiconductor. The present review article addresses the effect of electronic structural modulation in PB and PBAs to improve its electrocatalytic and cocatalytic activities. The recent achievements and challenges in designing PBAs and their application in energy conversion have been highlighted along with potential future advancements. Special emphasis has been given to understanding structural aspects and the subsequent establishment of a structure-activity relationship for energy conversion processes.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.