镍铁层双氢氧化物的晶格氧再生工程增强了氧进化催化的耐久性

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-25 DOI:10.1002/anie.202413250
Fengyu Wu, Fenyang Tian, Menggang Li, Shuo Geng, Longyu Qiu, Lin He, Lulu Li, Zhaoyu Chen, Yongsheng Yu, Weiwei Yang, Yanglong Hou
{"title":"镍铁层双氢氧化物的晶格氧再生工程增强了氧进化催化的耐久性","authors":"Fengyu Wu, Fenyang Tian, Menggang Li, Shuo Geng, Longyu Qiu, Lin He, Lulu Li, Zhaoyu Chen, Yongsheng Yu, Weiwei Yang, Yanglong Hou","doi":"10.1002/anie.202413250","DOIUrl":null,"url":null,"abstract":"The lattice oxygen mechanism (LOM) endows NiFe layered double hydroxide (NiFe-LDH) with superior oxygen evolution reaction (OER) activity, yet the frequent evolution and sluggish regeneration of lattice oxygen intensify the dissolution of active species. Herein, we overcome this challenge by constructing the NiFe hydroxide/Ni4Mo alloy (NiFe-LDH/Ni4Mo) heterojunction electrocatalyst, featuring the Ni4Mo alloy as the oxygen pump to provide oxygenous intermediates and electrons for NiFe-LDH. The released lattice oxygen can be timely offset by the oxygenous species during the LOM process, balancing the regeneration of lattice oxygen and assuring the enhancement of the durability. In consequence, the durability of NiFe-LDH is significantly enhanced after the modification of Ni4Mo with an impressively durability for over 60 h, much longer than that of NiFe-LDH counterpart with only 10 h. In-situ spectra and first-principle simulations reveal that the adsorption of OH− is significantly strengthened owing to the introduction of Ni4Mo, ensuring the rapid regeneration of lattice oxygen. Moreover, NiFe-LDH/Ni4Mo-based anion exchange membrane water electrolyzer (AEMWE) presents an impressive durability for over 150 h at 100 mA cm−2. The oxygen pump strategy opens opportunities to balance the evolution and regeneration of lattice oxygen, enhancing the durability of efficient OER catalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability\",\"authors\":\"Fengyu Wu, Fenyang Tian, Menggang Li, Shuo Geng, Longyu Qiu, Lin He, Lulu Li, Zhaoyu Chen, Yongsheng Yu, Weiwei Yang, Yanglong Hou\",\"doi\":\"10.1002/anie.202413250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lattice oxygen mechanism (LOM) endows NiFe layered double hydroxide (NiFe-LDH) with superior oxygen evolution reaction (OER) activity, yet the frequent evolution and sluggish regeneration of lattice oxygen intensify the dissolution of active species. Herein, we overcome this challenge by constructing the NiFe hydroxide/Ni4Mo alloy (NiFe-LDH/Ni4Mo) heterojunction electrocatalyst, featuring the Ni4Mo alloy as the oxygen pump to provide oxygenous intermediates and electrons for NiFe-LDH. The released lattice oxygen can be timely offset by the oxygenous species during the LOM process, balancing the regeneration of lattice oxygen and assuring the enhancement of the durability. In consequence, the durability of NiFe-LDH is significantly enhanced after the modification of Ni4Mo with an impressively durability for over 60 h, much longer than that of NiFe-LDH counterpart with only 10 h. In-situ spectra and first-principle simulations reveal that the adsorption of OH− is significantly strengthened owing to the introduction of Ni4Mo, ensuring the rapid regeneration of lattice oxygen. Moreover, NiFe-LDH/Ni4Mo-based anion exchange membrane water electrolyzer (AEMWE) presents an impressive durability for over 150 h at 100 mA cm−2. The oxygen pump strategy opens opportunities to balance the evolution and regeneration of lattice oxygen, enhancing the durability of efficient OER catalysts.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202413250\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202413250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶格氧机制(LOM)赋予了镍铁层双氢氧化物(NiFe-LDH)卓越的氧进化反应(OER)活性,然而晶格氧的频繁进化和缓慢再生加剧了活性物种的溶解。在此,我们通过构建氢氧化镍铁/Ni4Mo 合金(NiFe-LDH/Ni4Mo)异质结电催化剂克服了这一难题,该催化剂以 Ni4Mo 合金作为氧泵,为 NiFe-LDH 提供含氧中间体和电子。在 LOM 过程中,释放出的晶格氧能及时被含氧物种抵消,从而平衡了晶格氧的再生,保证了耐久性的提高。原位光谱和第一原理模拟显示,由于引入了 Ni4Mo,OH- 的吸附能力显著增强,确保了晶格氧的快速再生。此外,基于 NiFe-LDH/Ni4Mo 的阴离子交换膜水电解槽(AEMWE)在 100 mA cm-2 的条件下可持续使用 150 小时以上,表现出令人印象深刻的耐用性。氧泵策略为平衡晶格氧的进化和再生提供了机会,从而提高了高效 OER 催化剂的耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability
The lattice oxygen mechanism (LOM) endows NiFe layered double hydroxide (NiFe-LDH) with superior oxygen evolution reaction (OER) activity, yet the frequent evolution and sluggish regeneration of lattice oxygen intensify the dissolution of active species. Herein, we overcome this challenge by constructing the NiFe hydroxide/Ni4Mo alloy (NiFe-LDH/Ni4Mo) heterojunction electrocatalyst, featuring the Ni4Mo alloy as the oxygen pump to provide oxygenous intermediates and electrons for NiFe-LDH. The released lattice oxygen can be timely offset by the oxygenous species during the LOM process, balancing the regeneration of lattice oxygen and assuring the enhancement of the durability. In consequence, the durability of NiFe-LDH is significantly enhanced after the modification of Ni4Mo with an impressively durability for over 60 h, much longer than that of NiFe-LDH counterpart with only 10 h. In-situ spectra and first-principle simulations reveal that the adsorption of OH− is significantly strengthened owing to the introduction of Ni4Mo, ensuring the rapid regeneration of lattice oxygen. Moreover, NiFe-LDH/Ni4Mo-based anion exchange membrane water electrolyzer (AEMWE) presents an impressive durability for over 150 h at 100 mA cm−2. The oxygen pump strategy opens opportunities to balance the evolution and regeneration of lattice oxygen, enhancing the durability of efficient OER catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Early Detection of High-altitude Hypoxic Brain Injury by In Vivo Electrochemistry. Localized Water Restriction in Ternary Eutectic Electrolytes for Ultra-Low Temperature Hydrogen Batteries. Tetrahedral DNA Framework-Based Spherical Nucleic Acids for Efficient siRNA Delivery. Three-dimensional Covalent Organic Framework with Dense Lithiophilic Sites as Protective Layer to Enable High-Performance Lithium Metal Battery Near-Unity Photothermal CO2 Hydrogenation to Methanol based on a Molecule/Nanocarbon Hybrid Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1