由于水源持续受限,预计欧洲山毛榉未来在北缘的生长不会增强

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2024-10-25 DOI:10.1111/gcb.17546
Stefan Klesse, Richard L. Peters, Raquel Alfaro-Sánchez, Vincent Badeau, Claudia Baittinger, Giovanna Battipaglia, Didier Bert, Franco Biondi, Michal Bosela, Marius Budeanu, Vojtěch Čada, J. Julio Camarero, Liam Cavin, Hugues Claessens, Ana-Maria Cretan, Katarina Čufar, Martin de Luis, Isabel Dorado-Liñán, Choimaa Dulamsuren, Josep Maria Espelta, Balazs Garamszegi, Michael Grabner, Jozica Gricar, Andrew Hacket-Pain, Jon Kehlet Hansen, Claudia Hartl, Andrea Hevia, Martina Hobi, Pavel Janda, Alistair S. Jump, Jakub Kašpar, Marko Kazimirović, Srdjan Keren, Juergen Kreyling, Alexander Land, Nicolas Latte, François Lebourgeois, Christoph Leuschner, Mathieu Lévesque, Luis A. Longares, Edurne Martinez del Castillo, Annette Menzel, Maks Merela, Martin Mikoláš, Renzo Motta, Lena Muffler, Anna Neycken, Paola Nola, Momchil Panayotov, Any Mary Petritan, Ion Catalin Petritan, Ionel Popa, Peter Prislan, Tom Levanič, Catalin-Constantin Roibu, Álvaro Rubio-Cuadrado, Raúl Sánchez-Salguero, Pavel Šamonil, Branko Stajić, Miroslav Svoboda, Roberto Tognetti, Elvin Toromani, Volodymyr Trotsiuk, Ernst van der Maaten, Marieke van der Maaten-Theunissen, Astrid Vannoppen, Ivana Vašíčková, Georg von Arx, Martin Wilmking, Robert Weigel, Tzvetan Zlatanov, Christian Zang, Allan Buras
{"title":"由于水源持续受限,预计欧洲山毛榉未来在北缘的生长不会增强","authors":"Stefan Klesse,&nbsp;Richard L. Peters,&nbsp;Raquel Alfaro-Sánchez,&nbsp;Vincent Badeau,&nbsp;Claudia Baittinger,&nbsp;Giovanna Battipaglia,&nbsp;Didier Bert,&nbsp;Franco Biondi,&nbsp;Michal Bosela,&nbsp;Marius Budeanu,&nbsp;Vojtěch Čada,&nbsp;J. Julio Camarero,&nbsp;Liam Cavin,&nbsp;Hugues Claessens,&nbsp;Ana-Maria Cretan,&nbsp;Katarina Čufar,&nbsp;Martin de Luis,&nbsp;Isabel Dorado-Liñán,&nbsp;Choimaa Dulamsuren,&nbsp;Josep Maria Espelta,&nbsp;Balazs Garamszegi,&nbsp;Michael Grabner,&nbsp;Jozica Gricar,&nbsp;Andrew Hacket-Pain,&nbsp;Jon Kehlet Hansen,&nbsp;Claudia Hartl,&nbsp;Andrea Hevia,&nbsp;Martina Hobi,&nbsp;Pavel Janda,&nbsp;Alistair S. Jump,&nbsp;Jakub Kašpar,&nbsp;Marko Kazimirović,&nbsp;Srdjan Keren,&nbsp;Juergen Kreyling,&nbsp;Alexander Land,&nbsp;Nicolas Latte,&nbsp;François Lebourgeois,&nbsp;Christoph Leuschner,&nbsp;Mathieu Lévesque,&nbsp;Luis A. Longares,&nbsp;Edurne Martinez del Castillo,&nbsp;Annette Menzel,&nbsp;Maks Merela,&nbsp;Martin Mikoláš,&nbsp;Renzo Motta,&nbsp;Lena Muffler,&nbsp;Anna Neycken,&nbsp;Paola Nola,&nbsp;Momchil Panayotov,&nbsp;Any Mary Petritan,&nbsp;Ion Catalin Petritan,&nbsp;Ionel Popa,&nbsp;Peter Prislan,&nbsp;Tom Levanič,&nbsp;Catalin-Constantin Roibu,&nbsp;Álvaro Rubio-Cuadrado,&nbsp;Raúl Sánchez-Salguero,&nbsp;Pavel Šamonil,&nbsp;Branko Stajić,&nbsp;Miroslav Svoboda,&nbsp;Roberto Tognetti,&nbsp;Elvin Toromani,&nbsp;Volodymyr Trotsiuk,&nbsp;Ernst van der Maaten,&nbsp;Marieke van der Maaten-Theunissen,&nbsp;Astrid Vannoppen,&nbsp;Ivana Vašíčková,&nbsp;Georg von Arx,&nbsp;Martin Wilmking,&nbsp;Robert Weigel,&nbsp;Tzvetan Zlatanov,&nbsp;Christian Zang,&nbsp;Allan Buras","doi":"10.1111/gcb.17546","DOIUrl":null,"url":null,"abstract":"<p>With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (<i>Fagus sylvatica L.</i>) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (<i>R</i><sup>2</sup> = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 10","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17546","citationCount":"0","resultStr":"{\"title\":\"No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation\",\"authors\":\"Stefan Klesse,&nbsp;Richard L. Peters,&nbsp;Raquel Alfaro-Sánchez,&nbsp;Vincent Badeau,&nbsp;Claudia Baittinger,&nbsp;Giovanna Battipaglia,&nbsp;Didier Bert,&nbsp;Franco Biondi,&nbsp;Michal Bosela,&nbsp;Marius Budeanu,&nbsp;Vojtěch Čada,&nbsp;J. Julio Camarero,&nbsp;Liam Cavin,&nbsp;Hugues Claessens,&nbsp;Ana-Maria Cretan,&nbsp;Katarina Čufar,&nbsp;Martin de Luis,&nbsp;Isabel Dorado-Liñán,&nbsp;Choimaa Dulamsuren,&nbsp;Josep Maria Espelta,&nbsp;Balazs Garamszegi,&nbsp;Michael Grabner,&nbsp;Jozica Gricar,&nbsp;Andrew Hacket-Pain,&nbsp;Jon Kehlet Hansen,&nbsp;Claudia Hartl,&nbsp;Andrea Hevia,&nbsp;Martina Hobi,&nbsp;Pavel Janda,&nbsp;Alistair S. Jump,&nbsp;Jakub Kašpar,&nbsp;Marko Kazimirović,&nbsp;Srdjan Keren,&nbsp;Juergen Kreyling,&nbsp;Alexander Land,&nbsp;Nicolas Latte,&nbsp;François Lebourgeois,&nbsp;Christoph Leuschner,&nbsp;Mathieu Lévesque,&nbsp;Luis A. Longares,&nbsp;Edurne Martinez del Castillo,&nbsp;Annette Menzel,&nbsp;Maks Merela,&nbsp;Martin Mikoláš,&nbsp;Renzo Motta,&nbsp;Lena Muffler,&nbsp;Anna Neycken,&nbsp;Paola Nola,&nbsp;Momchil Panayotov,&nbsp;Any Mary Petritan,&nbsp;Ion Catalin Petritan,&nbsp;Ionel Popa,&nbsp;Peter Prislan,&nbsp;Tom Levanič,&nbsp;Catalin-Constantin Roibu,&nbsp;Álvaro Rubio-Cuadrado,&nbsp;Raúl Sánchez-Salguero,&nbsp;Pavel Šamonil,&nbsp;Branko Stajić,&nbsp;Miroslav Svoboda,&nbsp;Roberto Tognetti,&nbsp;Elvin Toromani,&nbsp;Volodymyr Trotsiuk,&nbsp;Ernst van der Maaten,&nbsp;Marieke van der Maaten-Theunissen,&nbsp;Astrid Vannoppen,&nbsp;Ivana Vašíčková,&nbsp;Georg von Arx,&nbsp;Martin Wilmking,&nbsp;Robert Weigel,&nbsp;Tzvetan Zlatanov,&nbsp;Christian Zang,&nbsp;Allan Buras\",\"doi\":\"10.1111/gcb.17546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (<i>Fagus sylvatica L.</i>) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (<i>R</i><sup>2</sup> = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"30 10\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17546\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17546\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17546","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

随着全球持续变暖,日益严重的缺水现象会对森林生态系统造成生理压力,从而对树木的生长、活力和存活产生负面影响。因此,各个树种将如何应对干旱压力的增加,是碳核算和制定气候变化减缓战略需要解决的一个关键研究问题。最近的树环研究表明,较高纬度地区的树木将受益于较高的气温,但这很可能高度依赖于树种,而较温带的树种则鲜为人知。我们利用由来自 2118 个地点的 26430 棵欧洲山毛榉(Fagus sylvatica L.)树组成的独特泛欧树环网络,采用线性混合效应建模框架(i)解释气候依赖性生长的变化,(ii)预测整个山毛榉分布区近期(2021-2050 年)的生长情况。我们将径向生长对每年变化的气候的响应空间模式作为平均气候条件(年平均气温、年平均气候水分平衡和大陆性)的函数进行建模。在校准期间(1952-2011 年),该模型具有较高的区域解释力(R2 = 0.38-0.72)。考虑到中度气候变化情景(CMIP6 SSP2-4.5),预计未来山毛榉在其大部分分布范围内的生长量都将下降。特别是,预计中欧西北部的生长量将减少 12%-18%(四分位数间距),地中海地区将减少 11%-21%。与此相反,气候驱动的增长仅限于目前出现的约 13%的地区,这些地区的历史年平均气温低于约 6°C。更具体地说,该模型预测阿尔卑斯山和喀尔巴阡山脉弧形高海拔群落的增长幅度为 3%-24%。值得注意的是,我们发现在斯堪的纳维亚半岛南部的极地前缘,未来的生长增长潜力很小(-10% 到 +2%)。因为在这一地区,山毛榉的生长主要受水源限制,其分布范围的北移将受到水源供应的制约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation

With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (R2 = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Measuring the Response Diversity of Ecological Communities Experiencing Multifarious Environmental Change Long-Term Soil Warming Drives Different Belowground Responses in Arbuscular Mycorrhizal and Ectomycorrhizal Trees Too Hot to Handle: A Meta-Analytical Review of the Thermal Tolerance and Adaptive Capacity of North American Sturgeon Soil pH Determines Nitrogen Effects on Methane Emissions From Rice Paddies A Proposed Coupling Framework of Biological Invasions: Quantifying the Management Prioritization in Mealybugs Invasion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1