海洋 Synechococcus 培养物和群落中假钴胺素的生产和利用

IF 4.3 2区 生物学 Q2 MICROBIOLOGY Environmental microbiology Pub Date : 2024-10-24 DOI:10.1111/1462-2920.16701
Catherine C. Bannon, Maria A. Soto, Elden Rowland, Nan Chen, Anna Gleason, Emmanuel Devred, Julie LaRoche, Erin M. Bertrand
{"title":"海洋 Synechococcus 培养物和群落中假钴胺素的生产和利用","authors":"Catherine C. Bannon,&nbsp;Maria A. Soto,&nbsp;Elden Rowland,&nbsp;Nan Chen,&nbsp;Anna Gleason,&nbsp;Emmanuel Devred,&nbsp;Julie LaRoche,&nbsp;Erin M. Bertrand","doi":"10.1111/1462-2920.16701","DOIUrl":null,"url":null,"abstract":"<p>Cobalamin influences marine microbial communities because an exogenous source is required by most eukaryotic phytoplankton, and demand can exceed supply. Pseudocobalamin is a cobalamin analogue produced and used by most cyanobacteria but is not directly available to eukaryotic phytoplankton. Some microbes can remodel pseudocobalamin into cobalamin, but a scarcity of pseudocobalamin measurements impedes our ability to evaluate its importance for marine cobalamin production. Here, we perform simultaneous measurements of pseudocobalamin and methionine synthase (MetH), the key protein that uses it as a co-factor, in <i>Synechococcus</i> cultures and communities. In <i>Synechococcus</i> sp. WH8102, pseudocobalamin quota decreases in low temperature (17°C) and low nitrogen to phosphorus ratio, while MetH did not. Pseudocobalamin and MetH quotas were influenced by culture methods and growth phase. Despite the variability present in cultures, we found a comparably consistent quota of 300 ± 100 pseudocobalamin molecules per cyanobacterial cell in the Northwest Atlantic Ocean, suggesting that cyanobacterial cell counts may be sufficient to estimate pseudocobalamin inventories in this region. This work offers insights into cellular pseudocobalamin metabolism, environmental and physiological conditions that may influence it, and provides environmental measurements to further our understanding of when and how pseudocobalamin can influence marine microbial communities.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16701","citationCount":"0","resultStr":"{\"title\":\"Production and utilization of pseudocobalamin in marine Synechococcus cultures and communities\",\"authors\":\"Catherine C. Bannon,&nbsp;Maria A. Soto,&nbsp;Elden Rowland,&nbsp;Nan Chen,&nbsp;Anna Gleason,&nbsp;Emmanuel Devred,&nbsp;Julie LaRoche,&nbsp;Erin M. Bertrand\",\"doi\":\"10.1111/1462-2920.16701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cobalamin influences marine microbial communities because an exogenous source is required by most eukaryotic phytoplankton, and demand can exceed supply. Pseudocobalamin is a cobalamin analogue produced and used by most cyanobacteria but is not directly available to eukaryotic phytoplankton. Some microbes can remodel pseudocobalamin into cobalamin, but a scarcity of pseudocobalamin measurements impedes our ability to evaluate its importance for marine cobalamin production. Here, we perform simultaneous measurements of pseudocobalamin and methionine synthase (MetH), the key protein that uses it as a co-factor, in <i>Synechococcus</i> cultures and communities. In <i>Synechococcus</i> sp. WH8102, pseudocobalamin quota decreases in low temperature (17°C) and low nitrogen to phosphorus ratio, while MetH did not. Pseudocobalamin and MetH quotas were influenced by culture methods and growth phase. Despite the variability present in cultures, we found a comparably consistent quota of 300 ± 100 pseudocobalamin molecules per cyanobacterial cell in the Northwest Atlantic Ocean, suggesting that cyanobacterial cell counts may be sufficient to estimate pseudocobalamin inventories in this region. This work offers insights into cellular pseudocobalamin metabolism, environmental and physiological conditions that may influence it, and provides environmental measurements to further our understanding of when and how pseudocobalamin can influence marine microbial communities.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16701\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16701\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16701","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

钴胺素会影响海洋微生物群落,因为大多数真核浮游植物都需要外源钴胺素,而且可能供不应求。伪钴胺素是大多数蓝藻产生和使用的钴胺素类似物,但真核浮游植物无法直接获得。一些微生物可以将假钴胺素重塑为钴胺素,但假钴胺素测量数据的缺乏妨碍了我们评估其对海洋钴胺素生产的重要性。在这里,我们同时测量了假钴胺素和蛋氨酸合成酶(MetH)的含量,蛋氨酸合成酶是将假钴胺素用作辅助因子的关键蛋白质。在 Synechococcus sp. WH8102 中,假钴胺素配额在低温(17°C)和低氮磷比的条件下会减少,而 MetH 则不会。假钴胺和 MetH 的配额受培养方法和生长阶段的影响。尽管培养物存在变异,但我们发现西北大西洋每个蓝藻细胞的假钴胺(300 ± 100)配额相当一致,这表明蓝藻细胞计数可能足以估算该地区的假钴胺库存量。这项研究深入揭示了细胞伪钴胺素代谢、可能对其产生影响的环境和生理条件,并提供了环境测量数据,有助于我们进一步了解伪钴胺素何时以及如何影响海洋微生物群落。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production and utilization of pseudocobalamin in marine Synechococcus cultures and communities

Cobalamin influences marine microbial communities because an exogenous source is required by most eukaryotic phytoplankton, and demand can exceed supply. Pseudocobalamin is a cobalamin analogue produced and used by most cyanobacteria but is not directly available to eukaryotic phytoplankton. Some microbes can remodel pseudocobalamin into cobalamin, but a scarcity of pseudocobalamin measurements impedes our ability to evaluate its importance for marine cobalamin production. Here, we perform simultaneous measurements of pseudocobalamin and methionine synthase (MetH), the key protein that uses it as a co-factor, in Synechococcus cultures and communities. In Synechococcus sp. WH8102, pseudocobalamin quota decreases in low temperature (17°C) and low nitrogen to phosphorus ratio, while MetH did not. Pseudocobalamin and MetH quotas were influenced by culture methods and growth phase. Despite the variability present in cultures, we found a comparably consistent quota of 300 ± 100 pseudocobalamin molecules per cyanobacterial cell in the Northwest Atlantic Ocean, suggesting that cyanobacterial cell counts may be sufficient to estimate pseudocobalamin inventories in this region. This work offers insights into cellular pseudocobalamin metabolism, environmental and physiological conditions that may influence it, and provides environmental measurements to further our understanding of when and how pseudocobalamin can influence marine microbial communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
期刊最新文献
Succession of Bacteria and Archaea Within the Soil Micro-Food Web Shifts Soil Respiration Dynamics Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens Bacterial communities on giant kelp in the Magellan Strait: Geographical and intra-thallus patterns Bee microbiomes in a changing climate: Investigating the effects of temperature on solitary bee life history and health Understanding the ecological versatility of Tetracladium species in temperate forest soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1