Chao Di , Yiwei Zhang , Lian Xue, Wenyi Zeng, Tengteng Wang, Yiwei Lin, Peng Chen, Xiaojun Feng, Wei Du, Bi-Feng Liu
{"title":"在纸质芯片上原位合成二维纳米酶涂层纤维素纳米纤维,用于便携式生物硫醇检测","authors":"Chao Di , Yiwei Zhang , Lian Xue, Wenyi Zeng, Tengteng Wang, Yiwei Lin, Peng Chen, Xiaojun Feng, Wei Du, Bi-Feng Liu","doi":"10.1016/j.aca.2024.343363","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Simple, fast and low-cost paper-based analytical devices (PADs) have a good application prospect for point-of-care detection of GSH. However, effective immobilization of functional nanomaterials onto cellulose, as a critical factor in the construction of PADs, presents numerous difficulties and challenges.</div></div><div><h3>Results</h3><div>In this study, we have developed an exceptionally straightforward and environmentally friendly synthetic approach by using ovalbumin (OVA) as a bio-mineralization template for the preparation of MnO<sub>2</sub> nanosheets. The MnO<sub>2</sub> nanosheets produced in the solution phase exhibited excellent intrinsic nano-enzyme activity and biodegradability. The OVA-MnO<sub>2</sub> nanosheets can effectively oxidize Amplex red in the absence of H<sub>2</sub>O<sub>2</sub>, enabling sensitive detection of GSH with a linear range of 5 nM–10 μM and a detection limit as low as 2.8 nM. Furthermore, we utilized this method to facilitate <em>in situ</em> synthesis of OVA-MnO<sub>2</sub> nanosheets directly on paper substrates. This approach eliminates the need for conventional stirring and centrifugation steps, greatly simplifying the fabrication process while reducing material usage and time expenditure. Characterization of the chemical composition and morphology confirmed the intimate growth of the 2D nano-enzymes on the cellulose fibers. Utilizing smartphone capabilities, the OVA-MnO<sub>2</sub> nanosheet-modified PAD enabled instrument-free detection of GSH, demonstrating high sensitivity (0.74 μM) and a wide linear response range (1–1000 μM).</div></div><div><h3>Significance</h3><div>The synthesis of MnO<sub>2</sub> nanosheets directly on cellulose substrates substantially streamlines the modification workflow of PADs and reduces detection costs, offering new avenues for clinical diagnostics of relevant diseases.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1332 ","pages":"Article 343363"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ synthesis of 2D nanozymes-coated cellulose nanofibers on paper-based chips for portable detection of biothiols\",\"authors\":\"Chao Di , Yiwei Zhang , Lian Xue, Wenyi Zeng, Tengteng Wang, Yiwei Lin, Peng Chen, Xiaojun Feng, Wei Du, Bi-Feng Liu\",\"doi\":\"10.1016/j.aca.2024.343363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Simple, fast and low-cost paper-based analytical devices (PADs) have a good application prospect for point-of-care detection of GSH. However, effective immobilization of functional nanomaterials onto cellulose, as a critical factor in the construction of PADs, presents numerous difficulties and challenges.</div></div><div><h3>Results</h3><div>In this study, we have developed an exceptionally straightforward and environmentally friendly synthetic approach by using ovalbumin (OVA) as a bio-mineralization template for the preparation of MnO<sub>2</sub> nanosheets. The MnO<sub>2</sub> nanosheets produced in the solution phase exhibited excellent intrinsic nano-enzyme activity and biodegradability. The OVA-MnO<sub>2</sub> nanosheets can effectively oxidize Amplex red in the absence of H<sub>2</sub>O<sub>2</sub>, enabling sensitive detection of GSH with a linear range of 5 nM–10 μM and a detection limit as low as 2.8 nM. Furthermore, we utilized this method to facilitate <em>in situ</em> synthesis of OVA-MnO<sub>2</sub> nanosheets directly on paper substrates. This approach eliminates the need for conventional stirring and centrifugation steps, greatly simplifying the fabrication process while reducing material usage and time expenditure. Characterization of the chemical composition and morphology confirmed the intimate growth of the 2D nano-enzymes on the cellulose fibers. Utilizing smartphone capabilities, the OVA-MnO<sub>2</sub> nanosheet-modified PAD enabled instrument-free detection of GSH, demonstrating high sensitivity (0.74 μM) and a wide linear response range (1–1000 μM).</div></div><div><h3>Significance</h3><div>The synthesis of MnO<sub>2</sub> nanosheets directly on cellulose substrates substantially streamlines the modification workflow of PADs and reduces detection costs, offering new avenues for clinical diagnostics of relevant diseases.</div></div>\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":\"1332 \",\"pages\":\"Article 343363\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003267024011644\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267024011644","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
In-situ synthesis of 2D nanozymes-coated cellulose nanofibers on paper-based chips for portable detection of biothiols
Background
Simple, fast and low-cost paper-based analytical devices (PADs) have a good application prospect for point-of-care detection of GSH. However, effective immobilization of functional nanomaterials onto cellulose, as a critical factor in the construction of PADs, presents numerous difficulties and challenges.
Results
In this study, we have developed an exceptionally straightforward and environmentally friendly synthetic approach by using ovalbumin (OVA) as a bio-mineralization template for the preparation of MnO2 nanosheets. The MnO2 nanosheets produced in the solution phase exhibited excellent intrinsic nano-enzyme activity and biodegradability. The OVA-MnO2 nanosheets can effectively oxidize Amplex red in the absence of H2O2, enabling sensitive detection of GSH with a linear range of 5 nM–10 μM and a detection limit as low as 2.8 nM. Furthermore, we utilized this method to facilitate in situ synthesis of OVA-MnO2 nanosheets directly on paper substrates. This approach eliminates the need for conventional stirring and centrifugation steps, greatly simplifying the fabrication process while reducing material usage and time expenditure. Characterization of the chemical composition and morphology confirmed the intimate growth of the 2D nano-enzymes on the cellulose fibers. Utilizing smartphone capabilities, the OVA-MnO2 nanosheet-modified PAD enabled instrument-free detection of GSH, demonstrating high sensitivity (0.74 μM) and a wide linear response range (1–1000 μM).
Significance
The synthesis of MnO2 nanosheets directly on cellulose substrates substantially streamlines the modification workflow of PADs and reduces detection costs, offering new avenues for clinical diagnostics of relevant diseases.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.