调整锂盐中阴离子的亲核性,为稳定的金属锂电池提供富含阴离子的溶解鞘

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-25 DOI:10.1002/adfm.202416800
Pan Zhou, Yu Ou, Qingqing Feng, Yingchun Xia, Haiyu Zhou, Wen-hui Hou, Xuan Song, Yang Lu, Shuaishuai Yan, Weili Zhang, Yun He, Kai Liu
{"title":"调整锂盐中阴离子的亲核性,为稳定的金属锂电池提供富含阴离子的溶解鞘","authors":"Pan Zhou, Yu Ou, Qingqing Feng, Yingchun Xia, Haiyu Zhou, Wen-hui Hou, Xuan Song, Yang Lu, Shuaishuai Yan, Weili Zhang, Yun He, Kai Liu","doi":"10.1002/adfm.202416800","DOIUrl":null,"url":null,"abstract":"Traditional lithium salts typically adhere to the designing principles of enhancing cation-anion dissociation degree to obtain a high electrolyte conductivity. This promotes the invention of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), where the symmetric electron-withdrawing trifluoromethanesulfonyl groups significantly delocalize the negative charge density around the nitrogen atom, thereby weakening the electrostatic interaction between Li<sup>+</sup> and the anion. Herein, deviating from the general principle, lithium (methanesulfonyl)(trifluoromethanesulfonyl) imide (LiMTFSI) is deliberately designed by substituting a unilateral electron-withdrawing trifluoromethyl (─CF<sub>3</sub>) group of LiTFSI with an electron-donating methyl (─CH<sub>3</sub>) group, to tune the nucleophilicity of the anion. This modification enhances Li-anion interaction, causing the anion to replace the solvent molecules in the Li<sup>+</sup> solvation shell. Additionally, the MTFSI<sup>−</sup> anion exhibits an elevated donor number to facilitate the solubility of LiNO<sub>3</sub> in carbonate-based electrolytes. The synergistic effect of these changes suppresses the decomposition of solvent and helps construct a stable solid electrolyte interphase (SEI) enriched with multiple inorganic lithium salts (e.g., Li<sub>2</sub>S, Li<sub>3</sub>N, and LiN<sub>x</sub>O<sub>y</sub>) on the Li metal anode, which enables the 500 mAh Li||LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> pouch cell to operate steadily for 150 cycles. It is believed this work would provide new insights and another dimension for designing functional anions beyond their role as charge carriers.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Nucleophilicity of Anion in Lithium Salt to Enable an Anion-Rich Solvation Sheath for Stable Lithium Metal Batteries\",\"authors\":\"Pan Zhou, Yu Ou, Qingqing Feng, Yingchun Xia, Haiyu Zhou, Wen-hui Hou, Xuan Song, Yang Lu, Shuaishuai Yan, Weili Zhang, Yun He, Kai Liu\",\"doi\":\"10.1002/adfm.202416800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional lithium salts typically adhere to the designing principles of enhancing cation-anion dissociation degree to obtain a high electrolyte conductivity. This promotes the invention of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), where the symmetric electron-withdrawing trifluoromethanesulfonyl groups significantly delocalize the negative charge density around the nitrogen atom, thereby weakening the electrostatic interaction between Li<sup>+</sup> and the anion. Herein, deviating from the general principle, lithium (methanesulfonyl)(trifluoromethanesulfonyl) imide (LiMTFSI) is deliberately designed by substituting a unilateral electron-withdrawing trifluoromethyl (─CF<sub>3</sub>) group of LiTFSI with an electron-donating methyl (─CH<sub>3</sub>) group, to tune the nucleophilicity of the anion. This modification enhances Li-anion interaction, causing the anion to replace the solvent molecules in the Li<sup>+</sup> solvation shell. Additionally, the MTFSI<sup>−</sup> anion exhibits an elevated donor number to facilitate the solubility of LiNO<sub>3</sub> in carbonate-based electrolytes. The synergistic effect of these changes suppresses the decomposition of solvent and helps construct a stable solid electrolyte interphase (SEI) enriched with multiple inorganic lithium salts (e.g., Li<sub>2</sub>S, Li<sub>3</sub>N, and LiN<sub>x</sub>O<sub>y</sub>) on the Li metal anode, which enables the 500 mAh Li||LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> pouch cell to operate steadily for 150 cycles. It is believed this work would provide new insights and another dimension for designing functional anions beyond their role as charge carriers.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202416800\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416800","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的锂盐通常遵循提高阳离子-阴离子离解度以获得高电解质电导率的设计原则。双(三氟甲烷磺酰基)亚胺锂(LiTFSI)的对称性夺电子三氟甲烷磺酰基使氮原子周围的负电荷密度显著分散,从而削弱了 Li+ 与阴离子之间的静电作用。在此,我们偏离一般原理,特意设计了(甲磺酰基)(三氟甲磺酰基)亚胺锂(LiMTFSI),用一个给电子的甲基(-CH3)基团取代 LiTFSI 的单侧抽电子的三氟甲基(-CF3)基团,以调节阴离子的亲核性。这种改性增强了锂阴离子的相互作用,使阴离子取代了 Li+ 溶壳中的溶剂分子。此外,MTFSI- 阴离子的供体数增加,从而提高了 LiNO3 在碳酸盐电解质中的溶解度。这些变化的协同效应抑制了溶剂的分解,有助于在锂金属阳极上构建富含多种无机锂盐(如 Li2S、Li3N 和 LiNxOy)的稳定固态电解质相(SEI),从而使 500 mAh Li||LiNi0.5Co0.2Mn0.3O2 袋式电池能稳定运行 150 个循环。相信这项工作将为设计功能阴离子提供新的见解和另一个维度,而不仅仅是其作为电荷载体的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning the Nucleophilicity of Anion in Lithium Salt to Enable an Anion-Rich Solvation Sheath for Stable Lithium Metal Batteries
Traditional lithium salts typically adhere to the designing principles of enhancing cation-anion dissociation degree to obtain a high electrolyte conductivity. This promotes the invention of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), where the symmetric electron-withdrawing trifluoromethanesulfonyl groups significantly delocalize the negative charge density around the nitrogen atom, thereby weakening the electrostatic interaction between Li+ and the anion. Herein, deviating from the general principle, lithium (methanesulfonyl)(trifluoromethanesulfonyl) imide (LiMTFSI) is deliberately designed by substituting a unilateral electron-withdrawing trifluoromethyl (─CF3) group of LiTFSI with an electron-donating methyl (─CH3) group, to tune the nucleophilicity of the anion. This modification enhances Li-anion interaction, causing the anion to replace the solvent molecules in the Li+ solvation shell. Additionally, the MTFSI anion exhibits an elevated donor number to facilitate the solubility of LiNO3 in carbonate-based electrolytes. The synergistic effect of these changes suppresses the decomposition of solvent and helps construct a stable solid electrolyte interphase (SEI) enriched with multiple inorganic lithium salts (e.g., Li2S, Li3N, and LiNxOy) on the Li metal anode, which enables the 500 mAh Li||LiNi0.5Co0.2Mn0.3O2 pouch cell to operate steadily for 150 cycles. It is believed this work would provide new insights and another dimension for designing functional anions beyond their role as charge carriers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Covalently Merging Ionic Liquids and Conjugated Polymers: A Molecular Design Strategy for Green Solvent-Processable Mixed Ion–Electron Conductors Toward High-Performing Chemical Sensors (Adv. Funct. Mater. 45/2024) Masthead: (Adv. Funct. Mater. 45/2024) Artificial Spores as Multi-Functional Biocatalysts to Perform Biosynthetic Cascades (Adv. Funct. Mater. 45/2024) Transcranial NIR Neuromodulation via Multifunctional Nano-Optical Electrodes for Relieving Depressive Symptoms (Adv. Funct. Mater. 45/2024) Achieving Tunable High-Performance Giant Magnetocaloric Effect in Hexagonal Mn-Fe-P-Si Materials through Different D-Block Doping (Adv. Funct. Mater. 45/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1