估算病毒对土壤碳动态影响的重要性

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2024-10-25 DOI:10.1111/gcb.17524
Amy E. Zimmerman, Emily B. Graham, Jason McDermott, Kirsten S. Hofmockel
{"title":"估算病毒对土壤碳动态影响的重要性","authors":"Amy E. Zimmerman,&nbsp;Emily B. Graham,&nbsp;Jason McDermott,&nbsp;Kirsten S. Hofmockel","doi":"10.1111/gcb.17524","DOIUrl":null,"url":null,"abstract":"<p>Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus–host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 10","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17524","citationCount":"0","resultStr":"{\"title\":\"Estimating the Importance of Viral Contributions to Soil Carbon Dynamics\",\"authors\":\"Amy E. Zimmerman,&nbsp;Emily B. Graham,&nbsp;Jason McDermott,&nbsp;Kirsten S. Hofmockel\",\"doi\":\"10.1111/gcb.17524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus–host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"30 10\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17524\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17524\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17524","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

预测碳动态的生物地球化学模型越来越多地包括微生物过程,这反映了微生物在调节土壤与大气之间碳流动方面的重要性。土壤病毒可使碳在各种化学库之间重新定向,这表明需要量化和开发能明确表示病毒动态的土壤碳模型。在本文中,我们对土壤中病毒感染可能从微生物生物量中释放的碳进行了全球估算,并从现有文献中综合出一个定量土壤碳预算,其中明确包括病毒的影响。然后,我们将病毒影响海洋生态系统碳循环的已知机制纳入土壤明确框架。最后,我们探讨了病毒感染过程中病毒与宿主相互作用的多样性,并对感染模式如何影响土壤碳的归宿进行了构思。我们的综述强调了阻碍将病毒纳入土壤碳循环研究的关键知识空白,并提出了具体的假设,以便对解释生态系统尺度碳通量的微生物动态进行更好的量化测试。确定土壤碳动态背后的关键驱动因素(包括这些难以捉摸但可能普遍存在的碳再分配病毒机制)的重要性随着气候变化而变得更加迫切。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating the Importance of Viral Contributions to Soil Carbon Dynamics

Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus–host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Measuring the Response Diversity of Ecological Communities Experiencing Multifarious Environmental Change Long-Term Soil Warming Drives Different Belowground Responses in Arbuscular Mycorrhizal and Ectomycorrhizal Trees Too Hot to Handle: A Meta-Analytical Review of the Thermal Tolerance and Adaptive Capacity of North American Sturgeon Soil pH Determines Nitrogen Effects on Methane Emissions From Rice Paddies A Proposed Coupling Framework of Biological Invasions: Quantifying the Management Prioritization in Mealybugs Invasion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1