用于在高压输电系统中同时捕获风能和电场能的三电-电磁-电场混合能源收集器

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-10-26 DOI:10.1002/aenm.202403931
Qianwang Wang, Dongyang Hu, Xiaolong Huang, Zehong Chen, Zitang Yuan, Lipeng Zhong, Qiuqin Sun, Feng Wang, Sixing Xu, She Chen
{"title":"用于在高压输电系统中同时捕获风能和电场能的三电-电磁-电场混合能源收集器","authors":"Qianwang Wang, Dongyang Hu, Xiaolong Huang, Zehong Chen, Zitang Yuan, Lipeng Zhong, Qiuqin Sun, Feng Wang, Sixing Xu, She Chen","doi":"10.1002/aenm.202403931","DOIUrl":null,"url":null,"abstract":"With the development of smart grids, efficient condition monitoring of high voltage transmission system has become crucial, necessitating reliable power supplies for distributed sensors. Traditional energy harvesters often focus on either internal or external sources, limiting overall efficiency. This study introduces a triboelectric-electromagnetic-electric field hybrid energy harvester (TEE-HEH) that synergistically integrates triboelectric nanogenerators (TENGs), electromagnetic generators (EMGs), and electric field energy harvesters (EEHs) to simultaneously capture electric field and wind energy. Electric field energy is harvested via displacement currents between transmission lines and the ground, while TENGs and EMGs efficiently capture low- and high-speed wind energy, respectively, enabling broadband harvesting (2.3–10 m s<sup>−1</sup>). The synergistic combination of TENG, EMG, and EEH within the TEE-HEH leads to significantly enhanced energy capture efficiency from multiple sources. At a wind speed of 5 m s<sup>−1</sup>, a transmission line voltage of 25 kV, and a distance of 1.5 m, the TEE-HEH achieved peak power outputs of 18.5 mW (TENG), 262 mW (EMG), and 1.85 mW (EEH), demonstrating enhanced energy collection efficiency. An environmental monitoring system has been powered, demonstrating the TEE-HEH's practicality for dual-source energy harvesting in smart grid applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Triboelectric-Electromagnetic-Electric Field Energy Harvester for Simultaneous Wind and Electric Field Energy Capture in High-Voltage Transmission System\",\"authors\":\"Qianwang Wang, Dongyang Hu, Xiaolong Huang, Zehong Chen, Zitang Yuan, Lipeng Zhong, Qiuqin Sun, Feng Wang, Sixing Xu, She Chen\",\"doi\":\"10.1002/aenm.202403931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of smart grids, efficient condition monitoring of high voltage transmission system has become crucial, necessitating reliable power supplies for distributed sensors. Traditional energy harvesters often focus on either internal or external sources, limiting overall efficiency. This study introduces a triboelectric-electromagnetic-electric field hybrid energy harvester (TEE-HEH) that synergistically integrates triboelectric nanogenerators (TENGs), electromagnetic generators (EMGs), and electric field energy harvesters (EEHs) to simultaneously capture electric field and wind energy. Electric field energy is harvested via displacement currents between transmission lines and the ground, while TENGs and EMGs efficiently capture low- and high-speed wind energy, respectively, enabling broadband harvesting (2.3–10 m s<sup>−1</sup>). The synergistic combination of TENG, EMG, and EEH within the TEE-HEH leads to significantly enhanced energy capture efficiency from multiple sources. At a wind speed of 5 m s<sup>−1</sup>, a transmission line voltage of 25 kV, and a distance of 1.5 m, the TEE-HEH achieved peak power outputs of 18.5 mW (TENG), 262 mW (EMG), and 1.85 mW (EEH), demonstrating enhanced energy collection efficiency. An environmental monitoring system has been powered, demonstrating the TEE-HEH's practicality for dual-source energy harvesting in smart grid applications.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403931\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403931","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着智能电网的发展,高压输电系统的高效状态监测变得至关重要,这就要求为分布式传感器提供可靠的电源。传统的能量收集器通常侧重于内部或外部能源,从而限制了整体效率。本研究介绍了一种三电-电磁-电场混合能量收集器(TEE-HEH),它协同集成了三电纳米发电机(TENGs)、电磁发电机(EMGs)和电场能量收集器(EEHs),可同时捕获电场和风能。电场能通过输电线和地面之间的位移电流采集,而 TENG 和 EMG 则分别有效地采集低速和高速风能,从而实现宽带采集(2.3-10 m s-1)。在 TEE-HEH 中,TENG、EMG 和 EEH 的协同组合大大提高了从多种来源捕获能量的效率。在风速为 5 m s-1、输电线电压为 25 kV、距离为 1.5 m 的条件下,TEE-HEH 的峰值功率输出分别为 18.5 mW(TENG)、262 mW(EMG)和 1.85 mW(EEH),显示出更高的能量收集效率。已为一个环境监测系统供电,证明了 TEE-HEH 在智能电网应用中进行双源能量采集的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Triboelectric-Electromagnetic-Electric Field Energy Harvester for Simultaneous Wind and Electric Field Energy Capture in High-Voltage Transmission System
With the development of smart grids, efficient condition monitoring of high voltage transmission system has become crucial, necessitating reliable power supplies for distributed sensors. Traditional energy harvesters often focus on either internal or external sources, limiting overall efficiency. This study introduces a triboelectric-electromagnetic-electric field hybrid energy harvester (TEE-HEH) that synergistically integrates triboelectric nanogenerators (TENGs), electromagnetic generators (EMGs), and electric field energy harvesters (EEHs) to simultaneously capture electric field and wind energy. Electric field energy is harvested via displacement currents between transmission lines and the ground, while TENGs and EMGs efficiently capture low- and high-speed wind energy, respectively, enabling broadband harvesting (2.3–10 m s−1). The synergistic combination of TENG, EMG, and EEH within the TEE-HEH leads to significantly enhanced energy capture efficiency from multiple sources. At a wind speed of 5 m s−1, a transmission line voltage of 25 kV, and a distance of 1.5 m, the TEE-HEH achieved peak power outputs of 18.5 mW (TENG), 262 mW (EMG), and 1.85 mW (EEH), demonstrating enhanced energy collection efficiency. An environmental monitoring system has been powered, demonstrating the TEE-HEH's practicality for dual-source energy harvesting in smart grid applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Charge Carrier Collection Losses in Lead-Halide Perovskite Solar Cells Dynamic Water Microskin Induced by Photothermally Responsive Interpenetrating Hydrogel Networks for High-Performance Light-Tracking Water Evaporation Hybrid Triboelectric-Electromagnetic-Electric Field Energy Harvester for Simultaneous Wind and Electric Field Energy Capture in High-Voltage Transmission System Dual Strategies of Na+ Electrolyte Additives and Dendrites Protective Ti3C2TX-MXene/Zn Anode with 2D MXene Nanosheet Encased Niobium Pyrophosphate (NbP2O7) Composite Binder-Free Cathode for Stable Zinc-Ion Storage As-Doped Polycrystalline CdSeTe: Localized Defects, Carrier Mobility and Lifetimes, and Impact on High-Efficiency Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1