{"title":"铜绿微塑料复合污染物在混凝和污泥储存过程中的行为。","authors":"Zehui Yu, Xuqi Li, Zheng Li, Zhaoyu Wang, Yan Jin, Hangzhou Xu","doi":"10.1016/j.scitotenv.2024.177176","DOIUrl":null,"url":null,"abstract":"<p><p>Microcystis aeruginosa (M. aeruginosa) blooms and microplastics pollution have been major global water pollution concern in lakes and reservoirs. In this study, the behaviour of M. aeruginosa-microplastic composite pollutants in inorganic coagulant (PACl) and organic coagulant (HTCC) treatment was investigated. Results showed that, in coagulation stage, the dissolved extracellular polymers secreted by M. aeruginosa could promote the adhesion of microplastics to algae, so as to combine them into the algal flocs, thus improving the sedimentation and removal efficiency of microplastics. On the other hand, whilst microplastics increased the size of algal flocs in PACl coagulation and improved algal removal efficiency, they had the opposite effect on HTCC coagulation. And the removal of algal metabolites including microcystins were improved by the presence of microplastics. In sludge storage stage, the oxidative and mechanical damage effects of microplastics promoted the rupture of M. aeruginosa cells in PACl sludge but not in HTCC sludge, which mean more potential risks in recycling of PACl sludge water. Besides, microplastics promoted the proliferation of beneficial bacteria such as Poterioochromonas and Coccomyxa, which contributed to the control of sludge pollution.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177176"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behaviour of M. aeruginosa-Microplastic composite pollutants in coagulation and sludge storage.\",\"authors\":\"Zehui Yu, Xuqi Li, Zheng Li, Zhaoyu Wang, Yan Jin, Hangzhou Xu\",\"doi\":\"10.1016/j.scitotenv.2024.177176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microcystis aeruginosa (M. aeruginosa) blooms and microplastics pollution have been major global water pollution concern in lakes and reservoirs. In this study, the behaviour of M. aeruginosa-microplastic composite pollutants in inorganic coagulant (PACl) and organic coagulant (HTCC) treatment was investigated. Results showed that, in coagulation stage, the dissolved extracellular polymers secreted by M. aeruginosa could promote the adhesion of microplastics to algae, so as to combine them into the algal flocs, thus improving the sedimentation and removal efficiency of microplastics. On the other hand, whilst microplastics increased the size of algal flocs in PACl coagulation and improved algal removal efficiency, they had the opposite effect on HTCC coagulation. And the removal of algal metabolites including microcystins were improved by the presence of microplastics. In sludge storage stage, the oxidative and mechanical damage effects of microplastics promoted the rupture of M. aeruginosa cells in PACl sludge but not in HTCC sludge, which mean more potential risks in recycling of PACl sludge water. Besides, microplastics promoted the proliferation of beneficial bacteria such as Poterioochromonas and Coccomyxa, which contributed to the control of sludge pollution.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177176\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177176\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177176","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Behaviour of M. aeruginosa-Microplastic composite pollutants in coagulation and sludge storage.
Microcystis aeruginosa (M. aeruginosa) blooms and microplastics pollution have been major global water pollution concern in lakes and reservoirs. In this study, the behaviour of M. aeruginosa-microplastic composite pollutants in inorganic coagulant (PACl) and organic coagulant (HTCC) treatment was investigated. Results showed that, in coagulation stage, the dissolved extracellular polymers secreted by M. aeruginosa could promote the adhesion of microplastics to algae, so as to combine them into the algal flocs, thus improving the sedimentation and removal efficiency of microplastics. On the other hand, whilst microplastics increased the size of algal flocs in PACl coagulation and improved algal removal efficiency, they had the opposite effect on HTCC coagulation. And the removal of algal metabolites including microcystins were improved by the presence of microplastics. In sludge storage stage, the oxidative and mechanical damage effects of microplastics promoted the rupture of M. aeruginosa cells in PACl sludge but not in HTCC sludge, which mean more potential risks in recycling of PACl sludge water. Besides, microplastics promoted the proliferation of beneficial bacteria such as Poterioochromonas and Coccomyxa, which contributed to the control of sludge pollution.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.