Oluwafemi E Adeyeri, Akinleye H Folorunsho, Tolulope E Adeliyi, Kayode I Ayegbusi, Akintomide A Akinsanola, Christopher E Ndehedehe, Naveed Ahmed, Toju E Babalola
{"title":"气候变化正在加剧西非的降雨侵蚀和土壤侵蚀。","authors":"Oluwafemi E Adeyeri, Akinleye H Folorunsho, Tolulope E Adeliyi, Kayode I Ayegbusi, Akintomide A Akinsanola, Christopher E Ndehedehe, Naveed Ahmed, Toju E Babalola","doi":"10.1016/j.scitotenv.2024.177174","DOIUrl":null,"url":null,"abstract":"<p><p>Soil erosion is a critical environmental challenge with significant implications for agriculture, water quality, and ecosystem stability. Understanding its dynamics is essential for sustainable environmental management and societal welfare. Here, we analyze rainfall erosivity and erosion patterns across West Africa (WAF) during the historical (1982-2014), near future (2028-2060), and far future (2068-2100) periods under Shared Socioeconomic Pathways (SSPs 370 and 585). Using bias-corrected-downscaled (BCD) climate models validated against reference data, we ensure an accurate representation of rainfall-a key driver of erosivity (R-factor) and soil erosion. We compare Renard's approach and the Modified Fournier Index (MFI) to calculate the R-factor and note a strong correlation. However, Renard's method shows slightly lower accuracy in Sierra Leone, Guinea, and The Gambia, likely due to its inability to capture high-intensity, short-duration rainfall events. In contrast, the MFI, utilizing continuous rain gauge data, proves more reliable for these regions. We also attribute fluctuations in erosivity, such as those seen during the 2003 West Africa floods, to synoptic weather patterns influenced by multiple climate processes. Furthermore, our analysis reveals regions where future soil erosion could exceed 20 t/ha/yr due to climate change. Under the SSP 370 scenario, soil erosion in WAF is projected to rise by 14.84 % in the near future and 18.65 % in the far future, increasing further under SSP 585 to 19.86 % and 23.49 %, respectively. The most severe increases are expected in Benin and Nigeria, with Nigeria potentially facing a 66.41 % rise in erosion by the far future under SSP 585. These findings highlight the region's exposure to intensified climatic conditions and underscore the urgent need for targeted soil management and climate adaptation strategies to mitigate erosion's ecological and socioeconomic impacts.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177174"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate change is intensifying rainfall erosivity and soil erosion in West Africa.\",\"authors\":\"Oluwafemi E Adeyeri, Akinleye H Folorunsho, Tolulope E Adeliyi, Kayode I Ayegbusi, Akintomide A Akinsanola, Christopher E Ndehedehe, Naveed Ahmed, Toju E Babalola\",\"doi\":\"10.1016/j.scitotenv.2024.177174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil erosion is a critical environmental challenge with significant implications for agriculture, water quality, and ecosystem stability. Understanding its dynamics is essential for sustainable environmental management and societal welfare. Here, we analyze rainfall erosivity and erosion patterns across West Africa (WAF) during the historical (1982-2014), near future (2028-2060), and far future (2068-2100) periods under Shared Socioeconomic Pathways (SSPs 370 and 585). Using bias-corrected-downscaled (BCD) climate models validated against reference data, we ensure an accurate representation of rainfall-a key driver of erosivity (R-factor) and soil erosion. We compare Renard's approach and the Modified Fournier Index (MFI) to calculate the R-factor and note a strong correlation. However, Renard's method shows slightly lower accuracy in Sierra Leone, Guinea, and The Gambia, likely due to its inability to capture high-intensity, short-duration rainfall events. In contrast, the MFI, utilizing continuous rain gauge data, proves more reliable for these regions. We also attribute fluctuations in erosivity, such as those seen during the 2003 West Africa floods, to synoptic weather patterns influenced by multiple climate processes. Furthermore, our analysis reveals regions where future soil erosion could exceed 20 t/ha/yr due to climate change. Under the SSP 370 scenario, soil erosion in WAF is projected to rise by 14.84 % in the near future and 18.65 % in the far future, increasing further under SSP 585 to 19.86 % and 23.49 %, respectively. The most severe increases are expected in Benin and Nigeria, with Nigeria potentially facing a 66.41 % rise in erosion by the far future under SSP 585. These findings highlight the region's exposure to intensified climatic conditions and underscore the urgent need for targeted soil management and climate adaptation strategies to mitigate erosion's ecological and socioeconomic impacts.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177174\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177174\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177174","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Climate change is intensifying rainfall erosivity and soil erosion in West Africa.
Soil erosion is a critical environmental challenge with significant implications for agriculture, water quality, and ecosystem stability. Understanding its dynamics is essential for sustainable environmental management and societal welfare. Here, we analyze rainfall erosivity and erosion patterns across West Africa (WAF) during the historical (1982-2014), near future (2028-2060), and far future (2068-2100) periods under Shared Socioeconomic Pathways (SSPs 370 and 585). Using bias-corrected-downscaled (BCD) climate models validated against reference data, we ensure an accurate representation of rainfall-a key driver of erosivity (R-factor) and soil erosion. We compare Renard's approach and the Modified Fournier Index (MFI) to calculate the R-factor and note a strong correlation. However, Renard's method shows slightly lower accuracy in Sierra Leone, Guinea, and The Gambia, likely due to its inability to capture high-intensity, short-duration rainfall events. In contrast, the MFI, utilizing continuous rain gauge data, proves more reliable for these regions. We also attribute fluctuations in erosivity, such as those seen during the 2003 West Africa floods, to synoptic weather patterns influenced by multiple climate processes. Furthermore, our analysis reveals regions where future soil erosion could exceed 20 t/ha/yr due to climate change. Under the SSP 370 scenario, soil erosion in WAF is projected to rise by 14.84 % in the near future and 18.65 % in the far future, increasing further under SSP 585 to 19.86 % and 23.49 %, respectively. The most severe increases are expected in Benin and Nigeria, with Nigeria potentially facing a 66.41 % rise in erosion by the far future under SSP 585. These findings highlight the region's exposure to intensified climatic conditions and underscore the urgent need for targeted soil management and climate adaptation strategies to mitigate erosion's ecological and socioeconomic impacts.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.