十二烷基硫酸钠会重新排列转铁蛋白的构象,削弱其铁结合能力。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-10 Epub Date: 2024-10-22 DOI:10.1016/j.scitotenv.2024.177159
Manli Liu, Falin He, Ning Sun, Shaoyang Hu, Xingchen Zhao
{"title":"十二烷基硫酸钠会重新排列转铁蛋白的构象,削弱其铁结合能力。","authors":"Manli Liu, Falin He, Ning Sun, Shaoyang Hu, Xingchen Zhao","doi":"10.1016/j.scitotenv.2024.177159","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium dodecyl sulfate (SDS), an anionic surfactant used in many cleaning and hygiene products, is known for its dermal and respiratory toxicity. However, how this surfactant influences the iron dynamics within the body and the mechanism is unknown. We explored the interaction between SDS and human transferrin (HTF), focusing on the effects on iron-binding capacity and structural changes. Results revealed that SDS exposure led to a significant release of iron from HTF in a dose-dependent manner, changing its structure and reducing the iron-binding ability. Spectroscopic analyses showed that the protein secondary structure and skeleton, as well as the micro-environment of aromatic amino acids of HTF, were destroyed after SDS binding. Isothermal titration calorimetry (ITC) results (ΔG, ΔS, and ΔH were -40.1 kcal·mol<sup>-1</sup>, 0.16 kcal·mol<sup>-1</sup>·K<sup>-1</sup>, and 10.1 kcal·mol<sup>-1</sup>, respectively) indicated a spontaneous and hydrophobic interaction with one strong binding site. Molecular docking identified the preferred binding sites, emphasizing hydrophobic forces (with the hydrophobic tail) and hydrogen bonds (with the hydrophilic head) as the primary driving forces, which aligns with the ITC results. Overall, this comprehensive analysis sheds light on the intricate interplay between SDS and HTF, providing insights into potential health risks associated with SDS exposure.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177159"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium dodecyl sulfate rearranges the conformation of transferrin and attenuates its iron-binding capacity.\",\"authors\":\"Manli Liu, Falin He, Ning Sun, Shaoyang Hu, Xingchen Zhao\",\"doi\":\"10.1016/j.scitotenv.2024.177159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium dodecyl sulfate (SDS), an anionic surfactant used in many cleaning and hygiene products, is known for its dermal and respiratory toxicity. However, how this surfactant influences the iron dynamics within the body and the mechanism is unknown. We explored the interaction between SDS and human transferrin (HTF), focusing on the effects on iron-binding capacity and structural changes. Results revealed that SDS exposure led to a significant release of iron from HTF in a dose-dependent manner, changing its structure and reducing the iron-binding ability. Spectroscopic analyses showed that the protein secondary structure and skeleton, as well as the micro-environment of aromatic amino acids of HTF, were destroyed after SDS binding. Isothermal titration calorimetry (ITC) results (ΔG, ΔS, and ΔH were -40.1 kcal·mol<sup>-1</sup>, 0.16 kcal·mol<sup>-1</sup>·K<sup>-1</sup>, and 10.1 kcal·mol<sup>-1</sup>, respectively) indicated a spontaneous and hydrophobic interaction with one strong binding site. Molecular docking identified the preferred binding sites, emphasizing hydrophobic forces (with the hydrophobic tail) and hydrogen bonds (with the hydrophilic head) as the primary driving forces, which aligns with the ITC results. Overall, this comprehensive analysis sheds light on the intricate interplay between SDS and HTF, providing insights into potential health risks associated with SDS exposure.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177159\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177159\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177159","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

十二烷基硫酸钠(SDS)是一种阴离子表面活性剂,用于许多清洁和卫生产品,其皮肤和呼吸道毒性众所周知。然而,这种表面活性剂如何影响体内铁的动态变化及其机制尚不清楚。我们探讨了 SDS 与人类转铁蛋白(HTF)之间的相互作用,重点研究了其对铁结合能力和结构变化的影响。结果发现,SDS 会以剂量依赖的方式导致 HTF 中的铁大量释放,改变其结构并降低其铁结合能力。光谱分析显示,与 SDS 结合后,HTF 的蛋白质二级结构和骨架以及芳香族氨基酸的微环境遭到破坏。等温滴定量热法(ITC)结果(ΔG、ΔS和ΔH分别为-40.1 kcal-mol-1、0.16 kcal-mol-1-K-1和10.1 kcal-mol-1)表明,与一个强结合位点存在自发的疏水相互作用。分子对接确定了首选结合位点,强调疏水力(与疏水尾部)和氢键(与亲水头部)是主要驱动力,这与 ITC 结果一致。总之,这项综合分析揭示了 SDS 和 HTF 之间错综复杂的相互作用,为了解与 SDS 暴露相关的潜在健康风险提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sodium dodecyl sulfate rearranges the conformation of transferrin and attenuates its iron-binding capacity.

Sodium dodecyl sulfate (SDS), an anionic surfactant used in many cleaning and hygiene products, is known for its dermal and respiratory toxicity. However, how this surfactant influences the iron dynamics within the body and the mechanism is unknown. We explored the interaction between SDS and human transferrin (HTF), focusing on the effects on iron-binding capacity and structural changes. Results revealed that SDS exposure led to a significant release of iron from HTF in a dose-dependent manner, changing its structure and reducing the iron-binding ability. Spectroscopic analyses showed that the protein secondary structure and skeleton, as well as the micro-environment of aromatic amino acids of HTF, were destroyed after SDS binding. Isothermal titration calorimetry (ITC) results (ΔG, ΔS, and ΔH were -40.1 kcal·mol-1, 0.16 kcal·mol-1·K-1, and 10.1 kcal·mol-1, respectively) indicated a spontaneous and hydrophobic interaction with one strong binding site. Molecular docking identified the preferred binding sites, emphasizing hydrophobic forces (with the hydrophobic tail) and hydrogen bonds (with the hydrophilic head) as the primary driving forces, which aligns with the ITC results. Overall, this comprehensive analysis sheds light on the intricate interplay between SDS and HTF, providing insights into potential health risks associated with SDS exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Spatial multi-criteria approaches for estimating geogenic radon hazard index. Exploring changes in epibenthic food web structure after implementation of a water-sediment regulation scheme. Exposure to microplastics contaminated with pharmaceuticals and personal care products: Histological effects on Ucides cordatus. Microbial necromass in soil profiles increases less efficiently than root biomass in long-term fenced grassland: Effects of microbial nitrogen limitation and soil depth. Trophic organization of the benthic communities off the South Italian coasts: A review with a modelistic approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1