Kathryn Wigley, Charlotte Armstrong, Simeon J. Smaill, Nicki M. Reid, Laura Kiely, Steve A. Wakelin
{"title":"温带森林的甲烷循环。","authors":"Kathryn Wigley, Charlotte Armstrong, Simeon J. Smaill, Nicki M. Reid, Laura Kiely, Steve A. Wakelin","doi":"10.1186/s13021-024-00283-z","DOIUrl":null,"url":null,"abstract":"<div><p>Temperate forest soils are considered significant methane (CH<sub>4</sub>) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH<sub>4</sub> fluxes in temperate forests could help mitigate CH<sub>4</sub> emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH<sub>4</sub> flux and assesses the current understanding of the CH<sub>4</sub> cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH<sub>4</sub> flux and need to be considered in CH<sub>4</sub> budgets. The literature confirmed that temperate planted forest soils are a significant CH<sub>4</sub> sink, but tree stems are a small CH<sub>4</sub> source. CH<sub>4</sub> fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH<sub>4</sub>’s lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH<sub>4</sub> fluxes. The variability in CH<sub>4</sub> fluxes within each component of the forest, is also not well understood and has led to overestimation of CH<sub>4</sub> fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH<sub>4</sub> sinks and sources within temperate forests are accurately accounted for and able to be included in CH<sub>4</sub> budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH<sub>4</sub> cycle.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00283-z","citationCount":"0","resultStr":"{\"title\":\"Methane cycling in temperate forests\",\"authors\":\"Kathryn Wigley, Charlotte Armstrong, Simeon J. Smaill, Nicki M. Reid, Laura Kiely, Steve A. Wakelin\",\"doi\":\"10.1186/s13021-024-00283-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temperate forest soils are considered significant methane (CH<sub>4</sub>) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH<sub>4</sub> fluxes in temperate forests could help mitigate CH<sub>4</sub> emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH<sub>4</sub> flux and assesses the current understanding of the CH<sub>4</sub> cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH<sub>4</sub> flux and need to be considered in CH<sub>4</sub> budgets. The literature confirmed that temperate planted forest soils are a significant CH<sub>4</sub> sink, but tree stems are a small CH<sub>4</sub> source. CH<sub>4</sub> fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH<sub>4</sub>’s lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH<sub>4</sub> fluxes. The variability in CH<sub>4</sub> fluxes within each component of the forest, is also not well understood and has led to overestimation of CH<sub>4</sub> fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH<sub>4</sub> sinks and sources within temperate forests are accurately accounted for and able to be included in CH<sub>4</sub> budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH<sub>4</sub> cycle.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00283-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00283-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00283-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Temperate forest soils are considered significant methane (CH4) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH4 fluxes in temperate forests could help mitigate CH4 emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH4 flux and assesses the current understanding of the CH4 cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH4 flux and need to be considered in CH4 budgets. The literature confirmed that temperate planted forest soils are a significant CH4 sink, but tree stems are a small CH4 source. CH4 fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH4’s lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH4 fluxes. The variability in CH4 fluxes within each component of the forest, is also not well understood and has led to overestimation of CH4 fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH4 sinks and sources within temperate forests are accurately accounted for and able to be included in CH4 budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH4 cycle.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.