{"title":"METTL14通过稳定HDAC3在m6A-IGF2BP3机制中的表达促进缺血性脑卒中诱发的脑损伤","authors":"Xuelin Liang, Songhe Yin, Canfang Hu, Dingzhong Tang, Guojun Luo, Zhen Liu","doi":"10.1007/s12013-024-01596-z","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m6A) modification is the most abundant post-transcriptional modification of mRNAs and has been identified to play critical roles in ischemic stroke (IS). Herein, this study aimed to investigate the function and mechanism of Methyltransferase-like 14 (METTL14) methylase in cerebral IS. Murine BV-2 microglial cell OGD/R models and rat middle cerebral artery occlusion (MCAO) models were established to mimic IS-induced neuronal damage in vitro and brain injury in vivo. Levels of METTL14, Histone Deacetylase 3 (HDAC3) and cGAS-STING axis-related proteins were detected using qRT-PCR or western blotting. Cell proliferation and inflammation were assessed by CCK-8 assay, EdU assay and ELISA. Flow cytometry detected microglia polarization. Cell pyroptosis was analyzed by detecting related-protein markers by western blotting. The m6A modification was determined by methylated RNA immunoprecipitation assay. Brain injury was analyzed by evaluating infarct volume and neurologic score. METTL14 levels were higher in OGD/R-induced microglial cells, primary microglia and infarct brain tissues of rat MCAO models. Functionally, METTL14 silencing reversed OGD/R-induced proliferation inhibition, inflammation and pyroptosis in microglial cells and primary microglia in vitro, and ameliorated cerebral ischemic injury in rat MCAO models. Mechanistically, METTL14 induced HDAC3 m6A modification in an IGF2BP3-dependent manner, and could activate cGAS-STING pathway through HDAC3. Moreover, HDAC3 overexpression reversed the neuroprotective effects of METTL14 silencing. METTL14 silencing reversed ischemic stroke-induced brain injury by inducing HDAC3 m6A modification in an IGF2BP3-dependent mechanism, recommending a novel insight for ameliorating cerebral ischemic stroke.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"METTL14 Promotes Ischemic Stroke-induced Brain Injury by Stabilizing HDAC3 Expression in an m6A-IGF2BP3 Mechanism.\",\"authors\":\"Xuelin Liang, Songhe Yin, Canfang Hu, Dingzhong Tang, Guojun Luo, Zhen Liu\",\"doi\":\"10.1007/s12013-024-01596-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N6-methyladenosine (m6A) modification is the most abundant post-transcriptional modification of mRNAs and has been identified to play critical roles in ischemic stroke (IS). Herein, this study aimed to investigate the function and mechanism of Methyltransferase-like 14 (METTL14) methylase in cerebral IS. Murine BV-2 microglial cell OGD/R models and rat middle cerebral artery occlusion (MCAO) models were established to mimic IS-induced neuronal damage in vitro and brain injury in vivo. Levels of METTL14, Histone Deacetylase 3 (HDAC3) and cGAS-STING axis-related proteins were detected using qRT-PCR or western blotting. Cell proliferation and inflammation were assessed by CCK-8 assay, EdU assay and ELISA. Flow cytometry detected microglia polarization. Cell pyroptosis was analyzed by detecting related-protein markers by western blotting. The m6A modification was determined by methylated RNA immunoprecipitation assay. Brain injury was analyzed by evaluating infarct volume and neurologic score. METTL14 levels were higher in OGD/R-induced microglial cells, primary microglia and infarct brain tissues of rat MCAO models. Functionally, METTL14 silencing reversed OGD/R-induced proliferation inhibition, inflammation and pyroptosis in microglial cells and primary microglia in vitro, and ameliorated cerebral ischemic injury in rat MCAO models. Mechanistically, METTL14 induced HDAC3 m6A modification in an IGF2BP3-dependent manner, and could activate cGAS-STING pathway through HDAC3. Moreover, HDAC3 overexpression reversed the neuroprotective effects of METTL14 silencing. METTL14 silencing reversed ischemic stroke-induced brain injury by inducing HDAC3 m6A modification in an IGF2BP3-dependent mechanism, recommending a novel insight for ameliorating cerebral ischemic stroke.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01596-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01596-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
N6-甲基腺苷(m6A)修饰是mRNA最丰富的转录后修饰,已被确认在缺血性脑卒中(IS)中发挥关键作用。本研究旨在探讨甲基转移酶样14(METTL14)甲基化酶在脑IS中的功能和机制。通过建立小鼠 BV-2 小胶质细胞 OGD/R 模型和大鼠大脑中动脉闭塞(MCAO)模型,在体外模拟 IS 诱导的神经元损伤,在体内模拟脑损伤。采用 qRT-PCR 或 Western 印迹法检测了 METTL14、组蛋白去乙酰化酶 3 (HDAC3) 和 cGAS-STING 轴相关蛋白的水平。细胞增殖和炎症通过 CCK-8 检测法、EdU 检测法和酶联免疫吸附法进行评估。流式细胞术检测小胶质细胞的极化。通过 Western 印迹法检测相关蛋白标记物,分析细胞的嗜热性。通过甲基化 RNA 免疫沉淀实验确定了 m6A 修饰。脑损伤通过评估梗死体积和神经系统评分进行分析。在OGD/R-诱导的小胶质细胞、原代小胶质细胞和MCAO模型大鼠梗死脑组织中,METTL14水平较高。从功能上讲,沉默METTL14可逆转OGD/R-诱导的体外小胶质细胞和原代小胶质细胞增殖抑制、炎症和脓毒症,并改善大鼠MCAO模型的脑缺血损伤。从机理上讲,METTL14能以IGF2BP3依赖的方式诱导HDAC3 m6A修饰,并能通过HDAC3激活cGAS-STING通路。此外,HDAC3的过表达逆转了METTL14沉默的神经保护作用。沉默METTL14通过诱导HDAC3 m6A修饰在IGF2BP3依赖性机制中逆转缺血性脑卒中诱导的脑损伤,为改善缺血性脑卒中提出了新的见解。
METTL14 Promotes Ischemic Stroke-induced Brain Injury by Stabilizing HDAC3 Expression in an m6A-IGF2BP3 Mechanism.
N6-methyladenosine (m6A) modification is the most abundant post-transcriptional modification of mRNAs and has been identified to play critical roles in ischemic stroke (IS). Herein, this study aimed to investigate the function and mechanism of Methyltransferase-like 14 (METTL14) methylase in cerebral IS. Murine BV-2 microglial cell OGD/R models and rat middle cerebral artery occlusion (MCAO) models were established to mimic IS-induced neuronal damage in vitro and brain injury in vivo. Levels of METTL14, Histone Deacetylase 3 (HDAC3) and cGAS-STING axis-related proteins were detected using qRT-PCR or western blotting. Cell proliferation and inflammation were assessed by CCK-8 assay, EdU assay and ELISA. Flow cytometry detected microglia polarization. Cell pyroptosis was analyzed by detecting related-protein markers by western blotting. The m6A modification was determined by methylated RNA immunoprecipitation assay. Brain injury was analyzed by evaluating infarct volume and neurologic score. METTL14 levels were higher in OGD/R-induced microglial cells, primary microglia and infarct brain tissues of rat MCAO models. Functionally, METTL14 silencing reversed OGD/R-induced proliferation inhibition, inflammation and pyroptosis in microglial cells and primary microglia in vitro, and ameliorated cerebral ischemic injury in rat MCAO models. Mechanistically, METTL14 induced HDAC3 m6A modification in an IGF2BP3-dependent manner, and could activate cGAS-STING pathway through HDAC3. Moreover, HDAC3 overexpression reversed the neuroprotective effects of METTL14 silencing. METTL14 silencing reversed ischemic stroke-induced brain injury by inducing HDAC3 m6A modification in an IGF2BP3-dependent mechanism, recommending a novel insight for ameliorating cerebral ischemic stroke.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.