{"title":"调查饮用水源的味道和气味特征:为期 3 年的综合监测研究","authors":"Zuhal Zengin, Latife Köker, Emine Gözde Ozbayram, Meriç Albay, Reyhan Akçaalan","doi":"10.1007/s00267-024-02071-4","DOIUrl":null,"url":null,"abstract":"<p><p>The monitoring of drinking water quality is a vital public health concern together with taste and odour (T&O) episodes, an emerging global problem causing a loss of public trust to the quality of water. Our objective was to monitor water quality of an important drinking water source and also the production dynamics of geosmin and 2-methylisoborneol (2-MIB) which cause taste and odour problems in the lake. The trophic status of the lake was classified as mesotrophic. 2-MIB was positively correlated temperature while geosmin was positively correlated with depth. Other physicochemical parameters related with water quality did not show significant correlation with geosmin and 2-MIB. The highest 2-MIB and geosmin concentrations were detected during the thermal stratification period in 2016 and 2018 by gas chromatography-mass spectrometry (GC-MS). Cyanobacteria and Actinobacteria were detected in geosmin & 2-MIB detected samples as potential taste and odour producers by PCR. Selected samples were analysed with metabarcoding and Planktothrix, Pseudanabaena, Cyanobium, Streptomyces, and Nocardioides were detected as potential geosmin & 2-MIB producers. Micrococcus, Rhodococcus, Acinetobacter, Comamonas, Novosphingobium, Sphingopyxis, Pseudomonas, Sphingomonas, Stenotrophomonas and Flavobacterium were identified as potential geosmin & 2-MIB degraders. The results highlighted the significant role of the autochthonous bacterial community, temperature and thermal stratification in the taste and odour dynamics of a drinking water source.</p>","PeriodicalId":543,"journal":{"name":"Environmental Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Taste and Odour Characteristics in a Drinking Water Source: A Comprehensive 3-Year Monitoring Study.\",\"authors\":\"Zuhal Zengin, Latife Köker, Emine Gözde Ozbayram, Meriç Albay, Reyhan Akçaalan\",\"doi\":\"10.1007/s00267-024-02071-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The monitoring of drinking water quality is a vital public health concern together with taste and odour (T&O) episodes, an emerging global problem causing a loss of public trust to the quality of water. Our objective was to monitor water quality of an important drinking water source and also the production dynamics of geosmin and 2-methylisoborneol (2-MIB) which cause taste and odour problems in the lake. The trophic status of the lake was classified as mesotrophic. 2-MIB was positively correlated temperature while geosmin was positively correlated with depth. Other physicochemical parameters related with water quality did not show significant correlation with geosmin and 2-MIB. The highest 2-MIB and geosmin concentrations were detected during the thermal stratification period in 2016 and 2018 by gas chromatography-mass spectrometry (GC-MS). Cyanobacteria and Actinobacteria were detected in geosmin & 2-MIB detected samples as potential taste and odour producers by PCR. Selected samples were analysed with metabarcoding and Planktothrix, Pseudanabaena, Cyanobium, Streptomyces, and Nocardioides were detected as potential geosmin & 2-MIB producers. Micrococcus, Rhodococcus, Acinetobacter, Comamonas, Novosphingobium, Sphingopyxis, Pseudomonas, Sphingomonas, Stenotrophomonas and Flavobacterium were identified as potential geosmin & 2-MIB degraders. The results highlighted the significant role of the autochthonous bacterial community, temperature and thermal stratification in the taste and odour dynamics of a drinking water source.</p>\",\"PeriodicalId\":543,\"journal\":{\"name\":\"Environmental Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00267-024-02071-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00267-024-02071-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Investigating Taste and Odour Characteristics in a Drinking Water Source: A Comprehensive 3-Year Monitoring Study.
The monitoring of drinking water quality is a vital public health concern together with taste and odour (T&O) episodes, an emerging global problem causing a loss of public trust to the quality of water. Our objective was to monitor water quality of an important drinking water source and also the production dynamics of geosmin and 2-methylisoborneol (2-MIB) which cause taste and odour problems in the lake. The trophic status of the lake was classified as mesotrophic. 2-MIB was positively correlated temperature while geosmin was positively correlated with depth. Other physicochemical parameters related with water quality did not show significant correlation with geosmin and 2-MIB. The highest 2-MIB and geosmin concentrations were detected during the thermal stratification period in 2016 and 2018 by gas chromatography-mass spectrometry (GC-MS). Cyanobacteria and Actinobacteria were detected in geosmin & 2-MIB detected samples as potential taste and odour producers by PCR. Selected samples were analysed with metabarcoding and Planktothrix, Pseudanabaena, Cyanobium, Streptomyces, and Nocardioides were detected as potential geosmin & 2-MIB producers. Micrococcus, Rhodococcus, Acinetobacter, Comamonas, Novosphingobium, Sphingopyxis, Pseudomonas, Sphingomonas, Stenotrophomonas and Flavobacterium were identified as potential geosmin & 2-MIB degraders. The results highlighted the significant role of the autochthonous bacterial community, temperature and thermal stratification in the taste and odour dynamics of a drinking water source.
期刊介绍:
Environmental Management offers research and opinions on use and conservation of natural resources, protection of habitats and control of hazards, spanning the field of environmental management without regard to traditional disciplinary boundaries. The journal aims to improve communication, making ideas and results from any field available to practitioners from other backgrounds. Contributions are drawn from biology, botany, chemistry, climatology, ecology, ecological economics, environmental engineering, fisheries, environmental law, forest sciences, geosciences, information science, public affairs, public health, toxicology, zoology and more.
As the principal user of nature, humanity is responsible for ensuring that its environmental impacts are benign rather than catastrophic. Environmental Management presents the work of academic researchers and professionals outside universities, including those in business, government, research establishments, and public interest groups, presenting a wide spectrum of viewpoints and approaches.