阿尔茨海默病与体细胞胰岛素相关疾病重叠的分子图谱。

IF 7.9 1区 医学 Q1 CLINICAL NEUROLOGY Alzheimer's Research & Therapy Pub Date : 2024-10-28 DOI:10.1186/s13195-024-01609-2
I Hyun Ruisch, Joanna Widomska, Ward De Witte, Nina R Mota, Giuseppe Fanelli, Veerle Van Gils, Willemijn J Jansen, Stephanie J B Vos, Abel Fóthi, Csaba Barta, Simone Berkel, Kazi A Alam, Aurora Martinez, Jan Haavik, Aet O'Leary, David Slattery, Mairéad Sullivan, Jeffrey Glennon, Jan K Buitelaar, Janita Bralten, Barbara Franke, Geert Poelmans
{"title":"阿尔茨海默病与体细胞胰岛素相关疾病重叠的分子图谱。","authors":"I Hyun Ruisch, Joanna Widomska, Ward De Witte, Nina R Mota, Giuseppe Fanelli, Veerle Van Gils, Willemijn J Jansen, Stephanie J B Vos, Abel Fóthi, Csaba Barta, Simone Berkel, Kazi A Alam, Aurora Martinez, Jan Haavik, Aet O'Leary, David Slattery, Mairéad Sullivan, Jeffrey Glennon, Jan K Buitelaar, Janita Bralten, Barbara Franke, Geert Poelmans","doi":"10.1186/s13195-024-01609-2","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards \"energy metabolism\" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"16 1","pages":"239"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514822/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases.\",\"authors\":\"I Hyun Ruisch, Joanna Widomska, Ward De Witte, Nina R Mota, Giuseppe Fanelli, Veerle Van Gils, Willemijn J Jansen, Stephanie J B Vos, Abel Fóthi, Csaba Barta, Simone Berkel, Kazi A Alam, Aurora Martinez, Jan Haavik, Aet O'Leary, David Slattery, Mairéad Sullivan, Jeffrey Glennon, Jan K Buitelaar, Janita Bralten, Barbara Franke, Geert Poelmans\",\"doi\":\"10.1186/s13195-024-01609-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards \\\"energy metabolism\\\" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":\"16 1\",\"pages\":\"239\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-024-01609-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-024-01609-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种多因素疾病,其病因既有遗传因素,也有环境因素。以往的证据表明,胰岛素信号传递紊乱是一种关键机制,在 AD 等神经退行性疾病和 2 型糖尿病(DM2)等合并躯体疾病中都起着作用。在本研究中,我们分析了现有的有关 AD 和体质性胰岛素相关疾病(SID)(即 DM2、代谢综合征和肥胖症)的全基因组关联研究(GWAS),以确定与 AD 和 SID 相关的基因,从而提高我们对其分子基础的认识。然后,我们对这些基因进行了功能富集分析。随后,我们利用(额外的)GWAS 数据,对 AD 和 SID 与血液和脑脊液(CSF)代谢物水平进行了共同遗传病因分析。此外,结合所有这些分析结果和精心的文献检索,我们建立了一个关于 AD 和 SID 重叠的分子图谱。从分子图谱中,我们发现了多个功能主题,包括胰岛素信号传导、雌激素信号传导、突触传递、脂质代谢和 tau 信号传导。我们还发现了AD/SID与血液/脑脊液中多种代谢物水平之间的共同遗传病因,这表明 "能量代谢 "是AD和SID都会受到影响的关键代谢途径。最后,该研究还提供了AD潜在新药靶点的线索(包括MARK4、TMEM219、FKBP5、NDUFS3和IL34),这些靶点可进一步开发成新的AD治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases.

Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Alzheimer's Research & Therapy
Alzheimer's Research & Therapy 医学-神经病学
CiteScore
13.10
自引率
3.30%
发文量
172
审稿时长
>12 weeks
期刊介绍: Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.
期刊最新文献
Post hoc analysis of ADAMANT, a phase 2 clinical trial of active tau immunotherapy with AADvac1 in patients with Alzheimer's disease, positive for plasma p-tau217. Frontotemporal structure preservation underlies the protective effect of lifetime intellectual cognitive reserve on cognition in the elderly. Elevated plasma p-tau231 is associated with reduced generalization and medial temporal lobe dynamic network flexibility among healthy older African Americans. Can the clinical sign "head-turning sign" and simple questions in "Neucop-Q" predict amyloid β pathology? A digitally supported multimodal lifestyle program to promote brain health among older adults (the LETHE randomized controlled feasibility trial): study design, progress, and first results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1