Ge Zhang, Jingyi Huang, Zhiqiang Sun, Yuhan Guo, Gang Lin, Zeyu Zhang, Jinbiao Zhao
{"title":"微量元素来源对添加氧化大豆油的猪生长性能、抗氧化活性和肉质的影响","authors":"Ge Zhang, Jingyi Huang, Zhiqiang Sun, Yuhan Guo, Gang Lin, Zeyu Zhang, Jinbiao Zhao","doi":"10.3390/antiox13101227","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing-finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five dietary treatments based on body weight (BW) and sex in a 30 d trial. Pigs were fed five diets: (i) fresh soy oil + inorganic trace minerals (ITMs) + inorganic selenium (FISI), (ii) oxidized soy oil + ITMs + inorganic selenium (OISI), (iii) fresh soy oil + ITMs + selenium yeast (FISY), (iv) oxidized soy oil + ITMs + selenium yeast (OISY), and (v) oxidized soy oil + organic trace minerals (OTMs) + selenium yeast (OOSY). Each dietary treatment included six replicates and six pigs per replicate (three barrows and three gilts). Feeding OISI resulted in lower average daily gain (ADG) and dressing percentage (<i>p</i> < 0.05). The OOSY group had a higher dressing percentage and activities of serum CAT and GSH-Px in growing-finishing pigs (<i>p</i> < 0.05). In addition, the relative abundance of Campylobacterota in the colonic digesta varied with the quality of soy oil and source of trace minerals (<i>p</i> < 0.05), but no significant differences in short-chain fatty acid concentrations were observed among all dietary groups. In conclusion, adding oxidized soy oil to the diet negatively impacted the ADG and dressing percentage of growing-finishing pigs, and replacing ITMs with OTMs and SY alleviated these negative impacts. A combination of OTMs and SY can support antioxidant capacity to mitigate the negative impacts of oxidized oil on the growth performance and dressing percentage of growing-finishing pigs.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505604/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Trace Mineral Source on Growth Performance, Antioxidant Activity, and Meat Quality of Pigs Fed an Oxidized Soy Oil Supplemented Diet.\",\"authors\":\"Ge Zhang, Jingyi Huang, Zhiqiang Sun, Yuhan Guo, Gang Lin, Zeyu Zhang, Jinbiao Zhao\",\"doi\":\"10.3390/antiox13101227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing-finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five dietary treatments based on body weight (BW) and sex in a 30 d trial. Pigs were fed five diets: (i) fresh soy oil + inorganic trace minerals (ITMs) + inorganic selenium (FISI), (ii) oxidized soy oil + ITMs + inorganic selenium (OISI), (iii) fresh soy oil + ITMs + selenium yeast (FISY), (iv) oxidized soy oil + ITMs + selenium yeast (OISY), and (v) oxidized soy oil + organic trace minerals (OTMs) + selenium yeast (OOSY). Each dietary treatment included six replicates and six pigs per replicate (three barrows and three gilts). Feeding OISI resulted in lower average daily gain (ADG) and dressing percentage (<i>p</i> < 0.05). The OOSY group had a higher dressing percentage and activities of serum CAT and GSH-Px in growing-finishing pigs (<i>p</i> < 0.05). In addition, the relative abundance of Campylobacterota in the colonic digesta varied with the quality of soy oil and source of trace minerals (<i>p</i> < 0.05), but no significant differences in short-chain fatty acid concentrations were observed among all dietary groups. In conclusion, adding oxidized soy oil to the diet negatively impacted the ADG and dressing percentage of growing-finishing pigs, and replacing ITMs with OTMs and SY alleviated these negative impacts. A combination of OTMs and SY can support antioxidant capacity to mitigate the negative impacts of oxidized oil on the growth performance and dressing percentage of growing-finishing pigs.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13101227\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of Trace Mineral Source on Growth Performance, Antioxidant Activity, and Meat Quality of Pigs Fed an Oxidized Soy Oil Supplemented Diet.
This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing-finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five dietary treatments based on body weight (BW) and sex in a 30 d trial. Pigs were fed five diets: (i) fresh soy oil + inorganic trace minerals (ITMs) + inorganic selenium (FISI), (ii) oxidized soy oil + ITMs + inorganic selenium (OISI), (iii) fresh soy oil + ITMs + selenium yeast (FISY), (iv) oxidized soy oil + ITMs + selenium yeast (OISY), and (v) oxidized soy oil + organic trace minerals (OTMs) + selenium yeast (OOSY). Each dietary treatment included six replicates and six pigs per replicate (three barrows and three gilts). Feeding OISI resulted in lower average daily gain (ADG) and dressing percentage (p < 0.05). The OOSY group had a higher dressing percentage and activities of serum CAT and GSH-Px in growing-finishing pigs (p < 0.05). In addition, the relative abundance of Campylobacterota in the colonic digesta varied with the quality of soy oil and source of trace minerals (p < 0.05), but no significant differences in short-chain fatty acid concentrations were observed among all dietary groups. In conclusion, adding oxidized soy oil to the diet negatively impacted the ADG and dressing percentage of growing-finishing pigs, and replacing ITMs with OTMs and SY alleviated these negative impacts. A combination of OTMs and SY can support antioxidant capacity to mitigate the negative impacts of oxidized oil on the growth performance and dressing percentage of growing-finishing pigs.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.