Duc Dat Le, Young Su Jang, Vinhquang Truong, Soojung Yu, Thientam Dinh, Mina Lee
{"title":"超临界流体萃取法提取的蔓荆子醌酸的生物活性","authors":"Duc Dat Le, Young Su Jang, Vinhquang Truong, Soojung Yu, Thientam Dinh, Mina Lee","doi":"10.3390/antiox13101235","DOIUrl":null,"url":null,"abstract":"<p><p>Acyl-quinic acids (AQAs), present in various plants with many health benefits, are regarded as therapeutic agents in the prevention and treatment of chronic and cardiovascular diseases. The molecular network-guided identification of ten AQA compounds, two new (<b>5</b> and <b>7</b>) and eight known compounds, were isolated from <i>V. rotundifolia</i> L. f. by using a newly applied extraction method. Their structures were determined through spectroscopic means, reaction mixtures, and modified Mosher and PGME techniques. These compounds were assessed for their anti-inflammatory and antioxidant capabilities. Notably, compounds <b>1</b>, <b>3</b>, <b>4</b>, <b>6</b>, <b>8</b>, and <b>9</b> exhibited notable DPPH radical scavenging activity. In LPS-induced HT-29 cells, compounds <b>2</b>-<b>7</b> significantly inhibited IL-8 production. Furthermore, compounds <b>3</b>-<b>5</b> and <b>7</b> markedly suppressed NO production, while compounds <b>1</b>-<b>10</b> effectively inhibited IL-6 production in LPS-induced RAW264.7 cells. Western blot analyses revealed that compounds <b>3</b>-<b>5</b>, and <b>7</b> reduced iNOS and COX-2 expression, and compounds <b>2</b>-<b>5</b>, <b>7</b>, and <b>8</b> also diminished the expression levels of p38 MAPK phosphorylation. Docking studies demonstrated the active compounds' binding affinity with the IL-8, iNOS, COX-2, and p38 MAPK proteins through interactions with essential amino acids within the binding pockets of complexes. The findings suggest that compounds <b>1</b>, <b>3</b>, <b>4</b>, <b>6</b>, <b>8</b>, and <b>9</b>, and compounds <b>3</b>-<b>5</b>, and <b>7</b>, hold promise as potential therapeutic agents for treating antioxidative and inflammatory diseases, respectively.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioactivities of Quinic Acids from <i>Vitex rotundifolia</i> Obtained by Supercritical Fluid Extraction.\",\"authors\":\"Duc Dat Le, Young Su Jang, Vinhquang Truong, Soojung Yu, Thientam Dinh, Mina Lee\",\"doi\":\"10.3390/antiox13101235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acyl-quinic acids (AQAs), present in various plants with many health benefits, are regarded as therapeutic agents in the prevention and treatment of chronic and cardiovascular diseases. The molecular network-guided identification of ten AQA compounds, two new (<b>5</b> and <b>7</b>) and eight known compounds, were isolated from <i>V. rotundifolia</i> L. f. by using a newly applied extraction method. Their structures were determined through spectroscopic means, reaction mixtures, and modified Mosher and PGME techniques. These compounds were assessed for their anti-inflammatory and antioxidant capabilities. Notably, compounds <b>1</b>, <b>3</b>, <b>4</b>, <b>6</b>, <b>8</b>, and <b>9</b> exhibited notable DPPH radical scavenging activity. In LPS-induced HT-29 cells, compounds <b>2</b>-<b>7</b> significantly inhibited IL-8 production. Furthermore, compounds <b>3</b>-<b>5</b> and <b>7</b> markedly suppressed NO production, while compounds <b>1</b>-<b>10</b> effectively inhibited IL-6 production in LPS-induced RAW264.7 cells. Western blot analyses revealed that compounds <b>3</b>-<b>5</b>, and <b>7</b> reduced iNOS and COX-2 expression, and compounds <b>2</b>-<b>5</b>, <b>7</b>, and <b>8</b> also diminished the expression levels of p38 MAPK phosphorylation. Docking studies demonstrated the active compounds' binding affinity with the IL-8, iNOS, COX-2, and p38 MAPK proteins through interactions with essential amino acids within the binding pockets of complexes. The findings suggest that compounds <b>1</b>, <b>3</b>, <b>4</b>, <b>6</b>, <b>8</b>, and <b>9</b>, and compounds <b>3</b>-<b>5</b>, and <b>7</b>, hold promise as potential therapeutic agents for treating antioxidative and inflammatory diseases, respectively.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13101235\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101235","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bioactivities of Quinic Acids from Vitex rotundifolia Obtained by Supercritical Fluid Extraction.
Acyl-quinic acids (AQAs), present in various plants with many health benefits, are regarded as therapeutic agents in the prevention and treatment of chronic and cardiovascular diseases. The molecular network-guided identification of ten AQA compounds, two new (5 and 7) and eight known compounds, were isolated from V. rotundifolia L. f. by using a newly applied extraction method. Their structures were determined through spectroscopic means, reaction mixtures, and modified Mosher and PGME techniques. These compounds were assessed for their anti-inflammatory and antioxidant capabilities. Notably, compounds 1, 3, 4, 6, 8, and 9 exhibited notable DPPH radical scavenging activity. In LPS-induced HT-29 cells, compounds 2-7 significantly inhibited IL-8 production. Furthermore, compounds 3-5 and 7 markedly suppressed NO production, while compounds 1-10 effectively inhibited IL-6 production in LPS-induced RAW264.7 cells. Western blot analyses revealed that compounds 3-5, and 7 reduced iNOS and COX-2 expression, and compounds 2-5, 7, and 8 also diminished the expression levels of p38 MAPK phosphorylation. Docking studies demonstrated the active compounds' binding affinity with the IL-8, iNOS, COX-2, and p38 MAPK proteins through interactions with essential amino acids within the binding pockets of complexes. The findings suggest that compounds 1, 3, 4, 6, 8, and 9, and compounds 3-5, and 7, hold promise as potential therapeutic agents for treating antioxidative and inflammatory diseases, respectively.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.