Valeria Scalcon, Federico Fiorese, Marica Albanesi, Alessandra Folda, Gianfranco Betti, Marco Bellamio, Emiliano Feller, Claudia Lodovichi, Giorgio Arrigoni, Oriano Marin, Maria Pia Rigobello
{"title":"副产品价值化:牛奶渗透物中的肽萃取物在细胞和体内模型中发挥抗氧化作用。","authors":"Valeria Scalcon, Federico Fiorese, Marica Albanesi, Alessandra Folda, Gianfranco Betti, Marco Bellamio, Emiliano Feller, Claudia Lodovichi, Giorgio Arrigoni, Oriano Marin, Maria Pia Rigobello","doi":"10.3390/antiox13101221","DOIUrl":null,"url":null,"abstract":"<p><p>The discarding of agri-food by-products is a stringent problem due to their high environmental impact. Recovery strategies can lead to a reduction of waste and result in new applications. Agri-food waste represents a source of bioactive molecules, which could promote health benefits. The primary goal of this research has been the assessment of the antioxidant activity of milk permeate, a dairy farm by-product, and the isolation and identification of peptide fractions endowed with antioxidant activity. The chromatographic extraction of the peptide fractions was carried out, and the peptides were identified by mass spectrometry. The fractions showed radical scavenging activity in vitro. Moreover, the results in the Caco-2 cell model demonstrated that the peptide fractions were able to protect from oxidative stress by stimulating the Keap1/Nrf2 antioxidant signaling pathway, increasing the transcription of antioxidant enzymes. In addition, the bioactive peptides can affect cellular metabolism, increasing mitochondrial respiration. The action of the peptide fractions was also assessed in vivo on a zebrafish model and resulted in the protection of the whole organism from the adverse effects of acute cold stress, highlighting their strong capability to protect from an oxidative insult. Altogether, the results unveil novel recovery strategies for food by-products as sources of antioxidant bioactive peptides that might be utilized for the development of functional foods.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504225/pdf/","citationCount":"0","resultStr":"{\"title\":\"By-Products Valorization: Peptide Fractions from Milk Permeate Exert Antioxidant Activity in Cellular and In Vivo Models.\",\"authors\":\"Valeria Scalcon, Federico Fiorese, Marica Albanesi, Alessandra Folda, Gianfranco Betti, Marco Bellamio, Emiliano Feller, Claudia Lodovichi, Giorgio Arrigoni, Oriano Marin, Maria Pia Rigobello\",\"doi\":\"10.3390/antiox13101221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discarding of agri-food by-products is a stringent problem due to their high environmental impact. Recovery strategies can lead to a reduction of waste and result in new applications. Agri-food waste represents a source of bioactive molecules, which could promote health benefits. The primary goal of this research has been the assessment of the antioxidant activity of milk permeate, a dairy farm by-product, and the isolation and identification of peptide fractions endowed with antioxidant activity. The chromatographic extraction of the peptide fractions was carried out, and the peptides were identified by mass spectrometry. The fractions showed radical scavenging activity in vitro. Moreover, the results in the Caco-2 cell model demonstrated that the peptide fractions were able to protect from oxidative stress by stimulating the Keap1/Nrf2 antioxidant signaling pathway, increasing the transcription of antioxidant enzymes. In addition, the bioactive peptides can affect cellular metabolism, increasing mitochondrial respiration. The action of the peptide fractions was also assessed in vivo on a zebrafish model and resulted in the protection of the whole organism from the adverse effects of acute cold stress, highlighting their strong capability to protect from an oxidative insult. Altogether, the results unveil novel recovery strategies for food by-products as sources of antioxidant bioactive peptides that might be utilized for the development of functional foods.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13101221\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13101221","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
By-Products Valorization: Peptide Fractions from Milk Permeate Exert Antioxidant Activity in Cellular and In Vivo Models.
The discarding of agri-food by-products is a stringent problem due to their high environmental impact. Recovery strategies can lead to a reduction of waste and result in new applications. Agri-food waste represents a source of bioactive molecules, which could promote health benefits. The primary goal of this research has been the assessment of the antioxidant activity of milk permeate, a dairy farm by-product, and the isolation and identification of peptide fractions endowed with antioxidant activity. The chromatographic extraction of the peptide fractions was carried out, and the peptides were identified by mass spectrometry. The fractions showed radical scavenging activity in vitro. Moreover, the results in the Caco-2 cell model demonstrated that the peptide fractions were able to protect from oxidative stress by stimulating the Keap1/Nrf2 antioxidant signaling pathway, increasing the transcription of antioxidant enzymes. In addition, the bioactive peptides can affect cellular metabolism, increasing mitochondrial respiration. The action of the peptide fractions was also assessed in vivo on a zebrafish model and resulted in the protection of the whole organism from the adverse effects of acute cold stress, highlighting their strong capability to protect from an oxidative insult. Altogether, the results unveil novel recovery strategies for food by-products as sources of antioxidant bioactive peptides that might be utilized for the development of functional foods.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.