澳大利亚鼠李科(Pomaderreae)的多倍体与物种丰富度有关,但与多样化率或生态位广度无关。

IF 3.6 2区 生物学 Q1 PLANT SCIENCES Annals of botany Pub Date : 2024-10-23 DOI:10.1093/aob/mcae181
Francis J Nge, Timothy A Hammer, Thais Vasconcelos, Ed Biffin, Juergen Kellermann, Michelle Waycott
{"title":"澳大利亚鼠李科(Pomaderreae)的多倍体与物种丰富度有关,但与多样化率或生态位广度无关。","authors":"Francis J Nge, Timothy A Hammer, Thais Vasconcelos, Ed Biffin, Juergen Kellermann, Michelle Waycott","doi":"10.1093/aob/mcae181","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations of ploidy with plant radiations could be the result of polyploid lineages exploiting greater niche space and novel niches due to their enhanced adaptability. Ploidy evolution and how it links with diversification of plants across the Australian continent is not well understood. Here, we focused on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae.</p><p><strong>Methods: </strong>We generated a densely-sampled phylogeny (90%, 215/240 spp.) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using TreePL. Ploidy estimates for each sequenced species was obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling, and WorldClim data.</p><p><strong>Key results: </strong>Polyploidy is extensive across the tribe, with almost half (45%) of species and majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e., species richness), but non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae, however polyploidy did allow for transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of southwest Western Australia.</p><p><strong>Conclusions: </strong>The relationship between polyploidy and diversification is complex. Ancient polyploidisation events likely played an important role in the diversification of species rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae).\",\"authors\":\"Francis J Nge, Timothy A Hammer, Thais Vasconcelos, Ed Biffin, Juergen Kellermann, Michelle Waycott\",\"doi\":\"10.1093/aob/mcae181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations of ploidy with plant radiations could be the result of polyploid lineages exploiting greater niche space and novel niches due to their enhanced adaptability. Ploidy evolution and how it links with diversification of plants across the Australian continent is not well understood. Here, we focused on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae.</p><p><strong>Methods: </strong>We generated a densely-sampled phylogeny (90%, 215/240 spp.) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using TreePL. Ploidy estimates for each sequenced species was obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling, and WorldClim data.</p><p><strong>Key results: </strong>Polyploidy is extensive across the tribe, with almost half (45%) of species and majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e., species richness), but non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae, however polyploidy did allow for transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of southwest Western Australia.</p><p><strong>Conclusions: </strong>The relationship between polyploidy and diversification is complex. Ancient polyploidisation events likely played an important role in the diversification of species rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae181\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae181","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:多倍体是植物进化的重要驱动力,与物种丰富度和多样化率的提高有关。多倍体与植物辐射的这些相关性可能是多倍体系因其更强的适应性而利用了更大的生态位空间和新的生态位的结果。倍性进化及其与整个澳大利亚大陆植物多样化之间的关系尚不十分清楚。在此,我们重点研究了澳大利亚鼠李科 Pomaderreae 的倍性进化:方法:我们生成了一个取样密集的鼠李科系统发生(90%,215/240 种),并用它来检验倍性的进化。我们获得了每个样本的 30 个正交核基因位点,并使用 TreePL 对系统发生进行了年代测定。根据分期序列数据,我们使用 nQuire 获得了每个测序物种的倍性估计值。我们使用 MiSSE 获得了尖端分化率,并检测了分化率与倍性之间的显著关系。我们还利用分布记录、物种分布模型和 WorldClim 数据评估了倍性水平与生态位广度之间的关系:多倍体在该族中广泛存在,几乎一半(45%)的物种和大多数属都表现出这一特征。我们发现多倍体与属的大小(即物种丰富度)之间存在明显的正相关关系,但多倍体与多样化率之间并不存在明显的正相关关系。多倍化并没有明显扩大 Pomaderreae 的生态位空间,但多倍化确实使其过渡到新的更潮湿的生态位。从空间上看,澳大利亚东部是Pomaderreae的多样化热点,而西澳大利亚西南部则是物种热点:结论:多倍体与物种多样化之间的关系十分复杂。古代多倍体化事件可能在物种丰富的属的多样化过程中发挥了重要作用。滞后效应可以解释现生种系的尖端多样化率与多倍体化之间的脱钩现象。要验证这些假设,还需要对其他类群进行进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae).

Background and aims: Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations of ploidy with plant radiations could be the result of polyploid lineages exploiting greater niche space and novel niches due to their enhanced adaptability. Ploidy evolution and how it links with diversification of plants across the Australian continent is not well understood. Here, we focused on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae.

Methods: We generated a densely-sampled phylogeny (90%, 215/240 spp.) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using TreePL. Ploidy estimates for each sequenced species was obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling, and WorldClim data.

Key results: Polyploidy is extensive across the tribe, with almost half (45%) of species and majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e., species richness), but non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae, however polyploidy did allow for transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of southwest Western Australia.

Conclusions: The relationship between polyploidy and diversification is complex. Ancient polyploidisation events likely played an important role in the diversification of species rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
期刊最新文献
Conservation genomics within government led conservation planning: an Australian case study exploring cost and benefit for threatened flora. Global diversification of the common moonwort ferns (Botrychium lunaria group, Ophioglossaceae) was mainly driven by Pleistocene climatic shifts. Niche comparisons reveal significant divergence despite narrow endemism in Leavenworthia, a genus of rare plants. Organellar phylogenomics at the epidendroid orchid base, with a focus on the mycoheterotrophic Wullschlaegelia. Temporal turnover of Ceratobasidiaceae orchid mycorrhizal fungal communities with ontogenetic and phenological development in Prasophyllum (Orchidaceae).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1