确定人类醛缩酶 A 中对表观 KM 呈中性的位置。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of biochemistry and biophysics Pub Date : 2024-11-01 DOI:10.1016/j.abb.2024.110183
Liskin Swint-Kruse, Tyler A. Martin , Tiffany Wu , Larissa L. Dougherty , Aron W. Fenton
{"title":"确定人类醛缩酶 A 中对表观 KM 呈中性的位置。","authors":"Liskin Swint-Kruse,&nbsp;Tyler A. Martin ,&nbsp;Tiffany Wu ,&nbsp;Larissa L. Dougherty ,&nbsp;Aron W. Fenton","doi":"10.1016/j.abb.2024.110183","DOIUrl":null,"url":null,"abstract":"<div><div>According to evolutionary theory, many naturally-occurring amino acid substitutions are expected to be neutral or near-neutral, with little effect on protein structure or function. Accordingly, most changes observed in human exomes are also expected to be neutral. As such, accurate algorithms for identifying medically-relevant changes must discriminate rare, non-neutral substitutions against a background of neutral substitutions. However, due to historical biases in biochemical experiments, the data available to train and validate prediction algorithms mostly contains non-neutral substitutions, with few examples of neutral substitutions. Thus, available training sets have the opposite composition of the desired test sets. Towards improving a dataset of these critical negative controls, we have concentrated on identifying neutral positions – those positions for which most of the possible 19 amino acid substitutions have little effect on protein structure or function. Here, we used a strategy based on multiple sequence alignments to identify putative neutral positions in human aldolase A, followed by biochemical assays for 147 aldolase substitutions. Results showed that most variants had little effect on either the apparent Michaelis constant for substrate fructose-1,6-bisphosphate or its apparent cooperativity. Thus, these data are useful for training and validating prediction algorithms. In addition, we created a database of these and other biochemically characterized aldolase variants along with aldolase sequences and characteristics derived from sequence and structure analyses. This database is publicly available at <span><span><em>https://github.com/liskinsk/Aldolase-variant-and-sequence-database</em></span><svg><path></path></svg></span>.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of positions in human aldolase a that are neutral for apparent KM\",\"authors\":\"Liskin Swint-Kruse,&nbsp;Tyler A. Martin ,&nbsp;Tiffany Wu ,&nbsp;Larissa L. Dougherty ,&nbsp;Aron W. Fenton\",\"doi\":\"10.1016/j.abb.2024.110183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>According to evolutionary theory, many naturally-occurring amino acid substitutions are expected to be neutral or near-neutral, with little effect on protein structure or function. Accordingly, most changes observed in human exomes are also expected to be neutral. As such, accurate algorithms for identifying medically-relevant changes must discriminate rare, non-neutral substitutions against a background of neutral substitutions. However, due to historical biases in biochemical experiments, the data available to train and validate prediction algorithms mostly contains non-neutral substitutions, with few examples of neutral substitutions. Thus, available training sets have the opposite composition of the desired test sets. Towards improving a dataset of these critical negative controls, we have concentrated on identifying neutral positions – those positions for which most of the possible 19 amino acid substitutions have little effect on protein structure or function. Here, we used a strategy based on multiple sequence alignments to identify putative neutral positions in human aldolase A, followed by biochemical assays for 147 aldolase substitutions. Results showed that most variants had little effect on either the apparent Michaelis constant for substrate fructose-1,6-bisphosphate or its apparent cooperativity. Thus, these data are useful for training and validating prediction algorithms. In addition, we created a database of these and other biochemically characterized aldolase variants along with aldolase sequences and characteristics derived from sequence and structure analyses. This database is publicly available at <span><span><em>https://github.com/liskinsk/Aldolase-variant-and-sequence-database</em></span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986124003059\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124003059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据进化理论,许多自然发生的氨基酸置换应该是中性或接近中性的,对蛋白质的结构或功能几乎没有影响。因此,在人类外显子组中观察到的大多数变化预计也是中性的。因此,识别医学相关变化的精确算法必须在中性取代的背景下区分罕见的非中性取代。然而,由于生化实验中的历史偏差,可用于训练和验证预测算法的数据大多包含非中性取代,中性取代的例子很少。因此,可用的训练集的组成与所需的测试集正好相反。为了改进这些关键阴性对照的数据集,我们集中精力识别中性位置--那些可能的 19 个氨基酸替换中大部分对蛋白质结构或功能影响甚微的位置。在这里,我们使用了一种基于多序列比对的策略来确定人类醛缩酶 A 中的假定中性位置,然后对 147 个醛缩酶取代位点进行生化检测。结果表明,大多数变体对底物果糖-1,6-二磷酸的表观迈克尔斯常数或其表观合作性的影响都很小。因此,这些数据有助于训练和验证预测算法。此外,我们还创建了一个数据库,其中包括这些变体和其他具有生物化学特征的醛缩酶变体,以及醛缩酶序列和通过序列与结构分析得出的特征。该数据库可通过 https://github.com/liskinsk/Aldolase-variant-and-sequence-database 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of positions in human aldolase a that are neutral for apparent KM
According to evolutionary theory, many naturally-occurring amino acid substitutions are expected to be neutral or near-neutral, with little effect on protein structure or function. Accordingly, most changes observed in human exomes are also expected to be neutral. As such, accurate algorithms for identifying medically-relevant changes must discriminate rare, non-neutral substitutions against a background of neutral substitutions. However, due to historical biases in biochemical experiments, the data available to train and validate prediction algorithms mostly contains non-neutral substitutions, with few examples of neutral substitutions. Thus, available training sets have the opposite composition of the desired test sets. Towards improving a dataset of these critical negative controls, we have concentrated on identifying neutral positions – those positions for which most of the possible 19 amino acid substitutions have little effect on protein structure or function. Here, we used a strategy based on multiple sequence alignments to identify putative neutral positions in human aldolase A, followed by biochemical assays for 147 aldolase substitutions. Results showed that most variants had little effect on either the apparent Michaelis constant for substrate fructose-1,6-bisphosphate or its apparent cooperativity. Thus, these data are useful for training and validating prediction algorithms. In addition, we created a database of these and other biochemically characterized aldolase variants along with aldolase sequences and characteristics derived from sequence and structure analyses. This database is publicly available at https://github.com/liskinsk/Aldolase-variant-and-sequence-database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
期刊最新文献
AI-assisted generation and in-depth in-silico evaluation of potential inhibitor targeting aurora kinase A (AURKA): An anticancer discovery exploiting synthetic lethality approach Editorial Board Identification of positions in human aldolase a that are neutral for apparent KM Liquiritigenin inhibits the migration, invasion, and EMT of prostate cancer through activating ER stress Rituximab induces ferroptosis and RSL3 overcomes rituximab resistance in diffuse large B-cell lymphoma cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1