Mudagadde G. Deeksha, Suresh M. Nebapure, Anil Dahuja, Doddachowdappa Sagar, Ramcharan Bhattacharya, Sabtharishi Subramanian
{"title":"线粒体酶变异和基因表达驱动抗磷化氢铁蒺藜的代谢适应性","authors":"Mudagadde G. Deeksha, Suresh M. Nebapure, Anil Dahuja, Doddachowdappa Sagar, Ramcharan Bhattacharya, Sabtharishi Subramanian","doi":"10.1002/arch.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Phosphine fumigation is essential for controlling storage pests like <i>Tribolium castaneum</i>, but its frequent application has resulted in resistance, primarily due to mutations in the Dihydrolipoamide dehydrogenase (DLD) gene associated with the <i>rph2</i> allele. This study demonstrates that the Patiala population exhibits homozygous resistance variations across populations, contrasting with the susceptibility observed in laboratory cultures. Our assessment of mitochondrial DLD and Cytochrome c oxidase (COX) activities showed significantly elevated levels in the Patiala population, with increases of approximately sevenfold for DLD and 6.92-fold for COX, indicating mitochondrial adaptations for enhanced energy production. Kinetic analyses of DLD in the resistant Patiala population showed a higher V<sub>max</sub> (0.005 mmol/min) and a significantly increased Km (16.66 mM), indicating variations in maximal enzyme activity and substrate affinity. Furthermore, resistant <i>T. castaneum</i> populations displayed substantial upregulation of DLD and COX gene expression, with DLD expression increasing by 10.53-fold and COX expression peaking at 102.57-fold in Patiala. Pearson correlation analysis indicated strong positive correlations (<i>r</i> > 0.8) between enzymatic activity and gene expression for both DLD and COX, suggesting a coordinated role in resistance mechanisms. The PCA biplot illustrated distribution patterns of enzymatic activity and gene expression among field-resistant populations, highlighting the association between increased resistance and elevated enzymatic activity and gene expression levels. Therefore, the upregulation of DLD and COX activities in resistant populations underscores their critical roles in counteracting phosphine, reflecting metabolic reprogramming for improved energy production under stress.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"117 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Adaptations in Phosphine-Resistant Tribolium castaneum Driven by Mitochondrial Enzyme Variability and Gene Expression\",\"authors\":\"Mudagadde G. Deeksha, Suresh M. Nebapure, Anil Dahuja, Doddachowdappa Sagar, Ramcharan Bhattacharya, Sabtharishi Subramanian\",\"doi\":\"10.1002/arch.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Phosphine fumigation is essential for controlling storage pests like <i>Tribolium castaneum</i>, but its frequent application has resulted in resistance, primarily due to mutations in the Dihydrolipoamide dehydrogenase (DLD) gene associated with the <i>rph2</i> allele. This study demonstrates that the Patiala population exhibits homozygous resistance variations across populations, contrasting with the susceptibility observed in laboratory cultures. Our assessment of mitochondrial DLD and Cytochrome c oxidase (COX) activities showed significantly elevated levels in the Patiala population, with increases of approximately sevenfold for DLD and 6.92-fold for COX, indicating mitochondrial adaptations for enhanced energy production. Kinetic analyses of DLD in the resistant Patiala population showed a higher V<sub>max</sub> (0.005 mmol/min) and a significantly increased Km (16.66 mM), indicating variations in maximal enzyme activity and substrate affinity. Furthermore, resistant <i>T. castaneum</i> populations displayed substantial upregulation of DLD and COX gene expression, with DLD expression increasing by 10.53-fold and COX expression peaking at 102.57-fold in Patiala. Pearson correlation analysis indicated strong positive correlations (<i>r</i> > 0.8) between enzymatic activity and gene expression for both DLD and COX, suggesting a coordinated role in resistance mechanisms. The PCA biplot illustrated distribution patterns of enzymatic activity and gene expression among field-resistant populations, highlighting the association between increased resistance and elevated enzymatic activity and gene expression levels. Therefore, the upregulation of DLD and COX activities in resistant populations underscores their critical roles in counteracting phosphine, reflecting metabolic reprogramming for improved energy production under stress.</p></div>\",\"PeriodicalId\":8281,\"journal\":{\"name\":\"Archives of Insect Biochemistry and Physiology\",\"volume\":\"117 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Insect Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arch.70002\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.70002","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metabolic Adaptations in Phosphine-Resistant Tribolium castaneum Driven by Mitochondrial Enzyme Variability and Gene Expression
Phosphine fumigation is essential for controlling storage pests like Tribolium castaneum, but its frequent application has resulted in resistance, primarily due to mutations in the Dihydrolipoamide dehydrogenase (DLD) gene associated with the rph2 allele. This study demonstrates that the Patiala population exhibits homozygous resistance variations across populations, contrasting with the susceptibility observed in laboratory cultures. Our assessment of mitochondrial DLD and Cytochrome c oxidase (COX) activities showed significantly elevated levels in the Patiala population, with increases of approximately sevenfold for DLD and 6.92-fold for COX, indicating mitochondrial adaptations for enhanced energy production. Kinetic analyses of DLD in the resistant Patiala population showed a higher Vmax (0.005 mmol/min) and a significantly increased Km (16.66 mM), indicating variations in maximal enzyme activity and substrate affinity. Furthermore, resistant T. castaneum populations displayed substantial upregulation of DLD and COX gene expression, with DLD expression increasing by 10.53-fold and COX expression peaking at 102.57-fold in Patiala. Pearson correlation analysis indicated strong positive correlations (r > 0.8) between enzymatic activity and gene expression for both DLD and COX, suggesting a coordinated role in resistance mechanisms. The PCA biplot illustrated distribution patterns of enzymatic activity and gene expression among field-resistant populations, highlighting the association between increased resistance and elevated enzymatic activity and gene expression levels. Therefore, the upregulation of DLD and COX activities in resistant populations underscores their critical roles in counteracting phosphine, reflecting metabolic reprogramming for improved energy production under stress.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.