Lin Cao , Xiaoli Huang , Jiangwei Zhu , Jian Xiao , Ling Xie
{"title":"法卡林二醇通过抑制 STAT/MAPK 信号通路,改善脊髓损伤后的功能恢复并缓解神经炎症。","authors":"Lin Cao , Xiaoli Huang , Jiangwei Zhu , Jian Xiao , Ling Xie","doi":"10.1016/j.bbrc.2024.150860","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) is a devastating trauma in the central nervous system (CNS), leading to motor and sensory impairment. Neuroinflammation is one of the critical contributors to the progression of secondary injury. Falcarindiol has been reported to efficaciously mitigate lipopolysaccharide (LPS)-mediated inflammation in RAW 264.7 cells. The role of falcarindiol in SCI recovery remains unclear. In this present study, traumatic SCI mice models and LPS-stimulated murine microglia cell line (BV2 cells) were performed to explore the pharmacological effects and the underlying mechanisms of falcarindiol in improving SCI repair with detection of motor function recovery, morphological changes, numbers of survival neurons and protein expression levels of inflammation or apoptosis-related proteins. Our study found that falcarindiol intervention could promote motor function recovery and reduce spinal cord tissue damage in mice following SCI. Mechanistically, falcarindiol intervention suppressed apoptosis-driven neuronal cell death and mitigated inflammatory reactions following SCI. Additionally, falcarindiol inhibited the activation of signal transducer and activator of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways <em>in vivo</em> and <em>in vitro</em>. This suppression of STAT and MAPK activation by falcarindiol was reversed by STAT3 agonist Colivelin TFA and MAPK agonist C16-PAF in BV2 cells, respectively. Moreover, the study further demonstrated that the anti-inflammation role of falcarindiol was obstructed by Colivelin TFA but not by C16-PAF in LPS-stimulated BV2 cells, suggesting that falcarindiol may efficaciously ameliorate neuroinflammation through inhibiting the activation of STAT signaling pathway following SCI. Collectively, our study indicates that falcarindiol may be a novel drug candidate for the treatment and management of SCI.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Falcarindiol improves functional recovery and alleviates neuroinflammation after spinal cord injury by inhibiting STAT/MAPK signaling pathways\",\"authors\":\"Lin Cao , Xiaoli Huang , Jiangwei Zhu , Jian Xiao , Ling Xie\",\"doi\":\"10.1016/j.bbrc.2024.150860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spinal cord injury (SCI) is a devastating trauma in the central nervous system (CNS), leading to motor and sensory impairment. Neuroinflammation is one of the critical contributors to the progression of secondary injury. Falcarindiol has been reported to efficaciously mitigate lipopolysaccharide (LPS)-mediated inflammation in RAW 264.7 cells. The role of falcarindiol in SCI recovery remains unclear. In this present study, traumatic SCI mice models and LPS-stimulated murine microglia cell line (BV2 cells) were performed to explore the pharmacological effects and the underlying mechanisms of falcarindiol in improving SCI repair with detection of motor function recovery, morphological changes, numbers of survival neurons and protein expression levels of inflammation or apoptosis-related proteins. Our study found that falcarindiol intervention could promote motor function recovery and reduce spinal cord tissue damage in mice following SCI. Mechanistically, falcarindiol intervention suppressed apoptosis-driven neuronal cell death and mitigated inflammatory reactions following SCI. Additionally, falcarindiol inhibited the activation of signal transducer and activator of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways <em>in vivo</em> and <em>in vitro</em>. This suppression of STAT and MAPK activation by falcarindiol was reversed by STAT3 agonist Colivelin TFA and MAPK agonist C16-PAF in BV2 cells, respectively. Moreover, the study further demonstrated that the anti-inflammation role of falcarindiol was obstructed by Colivelin TFA but not by C16-PAF in LPS-stimulated BV2 cells, suggesting that falcarindiol may efficaciously ameliorate neuroinflammation through inhibiting the activation of STAT signaling pathway following SCI. Collectively, our study indicates that falcarindiol may be a novel drug candidate for the treatment and management of SCI.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24013962\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24013962","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Falcarindiol improves functional recovery and alleviates neuroinflammation after spinal cord injury by inhibiting STAT/MAPK signaling pathways
Spinal cord injury (SCI) is a devastating trauma in the central nervous system (CNS), leading to motor and sensory impairment. Neuroinflammation is one of the critical contributors to the progression of secondary injury. Falcarindiol has been reported to efficaciously mitigate lipopolysaccharide (LPS)-mediated inflammation in RAW 264.7 cells. The role of falcarindiol in SCI recovery remains unclear. In this present study, traumatic SCI mice models and LPS-stimulated murine microglia cell line (BV2 cells) were performed to explore the pharmacological effects and the underlying mechanisms of falcarindiol in improving SCI repair with detection of motor function recovery, morphological changes, numbers of survival neurons and protein expression levels of inflammation or apoptosis-related proteins. Our study found that falcarindiol intervention could promote motor function recovery and reduce spinal cord tissue damage in mice following SCI. Mechanistically, falcarindiol intervention suppressed apoptosis-driven neuronal cell death and mitigated inflammatory reactions following SCI. Additionally, falcarindiol inhibited the activation of signal transducer and activator of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways in vivo and in vitro. This suppression of STAT and MAPK activation by falcarindiol was reversed by STAT3 agonist Colivelin TFA and MAPK agonist C16-PAF in BV2 cells, respectively. Moreover, the study further demonstrated that the anti-inflammation role of falcarindiol was obstructed by Colivelin TFA but not by C16-PAF in LPS-stimulated BV2 cells, suggesting that falcarindiol may efficaciously ameliorate neuroinflammation through inhibiting the activation of STAT signaling pathway following SCI. Collectively, our study indicates that falcarindiol may be a novel drug candidate for the treatment and management of SCI.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics