Wenfang Peng , Jiajia Wang , Juan Du, Bojin Xu, Wenyi Li, Shan Huang
{"title":"整合代谢组学和转录组学,揭示 H19-7 细胞中与 lncRNA Vof-16 相关的代谢特征和关键靶标。","authors":"Wenfang Peng , Jiajia Wang , Juan Du, Bojin Xu, Wenyi Li, Shan Huang","doi":"10.1016/j.bbrc.2024.150855","DOIUrl":null,"url":null,"abstract":"<div><div>Cognitive disorders represent one of the most common chronic complications of diabetes. Our previous study has demonstrated that long non-coding RNA (lncRNA) Vof-16 is upregulated in the hippocampal tissue of streptozotocin (STZ)-induced diabetic rats. Despite this finding, the specific roles and underlying mechanisms of lncRNA Vof-16 in diabetes-related cognitive dysfunction remain largely unexplored. To elucidate the mechanism involved, lncRNA Vof-16 was overexpressed in rat hippocampal cell line H19-7 through lentivirus transfection. We integrated metabolomics and transcriptomics approaches to identify potential targets and metabolic pathways influenced by lncRNA Vof-16. Key proteins and pathways were subsequently validated using western blotting and immunofluorescence staining. Transcriptomics indicated that lncRNA Vof-16 overexpression may modulate autophagic activity in H19-7 cells. Metabolomic profiling revealed that the primary differential metabolic pathways included trehalose degradation, tryptophan metabolism, vitamin B6 metabolism, glycolysis, pterine biosynthesis, and the pentose phosphate pathway. Ingenuity Pathway Analysis (IPA) of gene-metabolite networks demonstrated that the high lncRNA Vof-16 expression group exhibited a significantly higher association with autophagy compared to the low lncRNA Vof-16 expression group. Western blot results confirmed that lncRNA Vof-16 overexpression led to decreased protein expression levels of ATG3 and ATG12. Specifically, lncRNA Vof-16 reduces autophagy in hippocampal neurons by targeting the elevated levels of phospho-p70S6K, a downstream effector of mTORC1, potentially contributing to the pathogenesis of diabetic cognitive impairment. The construction of gene-metabolite networks may offer promising new strategies for addressing the growing issue of diabetic cognitive impairment.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of metabolomics and transcriptomics to reveal metabolic characteristics and key targets associated with lncRNA Vof-16 in H19-7 cells\",\"authors\":\"Wenfang Peng , Jiajia Wang , Juan Du, Bojin Xu, Wenyi Li, Shan Huang\",\"doi\":\"10.1016/j.bbrc.2024.150855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cognitive disorders represent one of the most common chronic complications of diabetes. Our previous study has demonstrated that long non-coding RNA (lncRNA) Vof-16 is upregulated in the hippocampal tissue of streptozotocin (STZ)-induced diabetic rats. Despite this finding, the specific roles and underlying mechanisms of lncRNA Vof-16 in diabetes-related cognitive dysfunction remain largely unexplored. To elucidate the mechanism involved, lncRNA Vof-16 was overexpressed in rat hippocampal cell line H19-7 through lentivirus transfection. We integrated metabolomics and transcriptomics approaches to identify potential targets and metabolic pathways influenced by lncRNA Vof-16. Key proteins and pathways were subsequently validated using western blotting and immunofluorescence staining. Transcriptomics indicated that lncRNA Vof-16 overexpression may modulate autophagic activity in H19-7 cells. Metabolomic profiling revealed that the primary differential metabolic pathways included trehalose degradation, tryptophan metabolism, vitamin B6 metabolism, glycolysis, pterine biosynthesis, and the pentose phosphate pathway. Ingenuity Pathway Analysis (IPA) of gene-metabolite networks demonstrated that the high lncRNA Vof-16 expression group exhibited a significantly higher association with autophagy compared to the low lncRNA Vof-16 expression group. Western blot results confirmed that lncRNA Vof-16 overexpression led to decreased protein expression levels of ATG3 and ATG12. Specifically, lncRNA Vof-16 reduces autophagy in hippocampal neurons by targeting the elevated levels of phospho-p70S6K, a downstream effector of mTORC1, potentially contributing to the pathogenesis of diabetic cognitive impairment. The construction of gene-metabolite networks may offer promising new strategies for addressing the growing issue of diabetic cognitive impairment.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24013913\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24013913","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integration of metabolomics and transcriptomics to reveal metabolic characteristics and key targets associated with lncRNA Vof-16 in H19-7 cells
Cognitive disorders represent one of the most common chronic complications of diabetes. Our previous study has demonstrated that long non-coding RNA (lncRNA) Vof-16 is upregulated in the hippocampal tissue of streptozotocin (STZ)-induced diabetic rats. Despite this finding, the specific roles and underlying mechanisms of lncRNA Vof-16 in diabetes-related cognitive dysfunction remain largely unexplored. To elucidate the mechanism involved, lncRNA Vof-16 was overexpressed in rat hippocampal cell line H19-7 through lentivirus transfection. We integrated metabolomics and transcriptomics approaches to identify potential targets and metabolic pathways influenced by lncRNA Vof-16. Key proteins and pathways were subsequently validated using western blotting and immunofluorescence staining. Transcriptomics indicated that lncRNA Vof-16 overexpression may modulate autophagic activity in H19-7 cells. Metabolomic profiling revealed that the primary differential metabolic pathways included trehalose degradation, tryptophan metabolism, vitamin B6 metabolism, glycolysis, pterine biosynthesis, and the pentose phosphate pathway. Ingenuity Pathway Analysis (IPA) of gene-metabolite networks demonstrated that the high lncRNA Vof-16 expression group exhibited a significantly higher association with autophagy compared to the low lncRNA Vof-16 expression group. Western blot results confirmed that lncRNA Vof-16 overexpression led to decreased protein expression levels of ATG3 and ATG12. Specifically, lncRNA Vof-16 reduces autophagy in hippocampal neurons by targeting the elevated levels of phospho-p70S6K, a downstream effector of mTORC1, potentially contributing to the pathogenesis of diabetic cognitive impairment. The construction of gene-metabolite networks may offer promising new strategies for addressing the growing issue of diabetic cognitive impairment.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics