{"title":"细胞对重力的动态反应:探索对白细胞的影响。","authors":"Anirudh Murali, Ram Rup Sarkar","doi":"10.1063/5.0216617","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the allure of space exploration and human spaceflight has surged, yet the effects of microgravity on the human body remain a significant concern. Immune and red blood cells rely on hematic or lymphatic streams as their primary means of transportation, posing notable challenges under microgravity conditions. This study sheds light on the intricate dynamics of cell behavior when suspended in bio-fluid under varying gravitational forces. Utilizing the dissipative particle dynamics approach, blood and white blood cells were modeled, with gravity applied as an external force along the vertical axis, ranging from 0 to 2 g in parameter sweeps. The results revealed discernible alterations in the cell shape and spatial alignment in response to gravity, quantified through metrics such as elongation and deformation indices, pitch angle, and normalized center of mass. Statistical analysis using the Mann-Whitney U test underscored clear distinctions between microgravity (<1 g) and hypergravity (>1 g) samples compared to normal gravity (1 g). Furthermore, the examination of forces exerted on the solid, including drag, shear stress, and solid forces, unveiled a reduction in the magnitude as the gravitational force increased. Additional analysis through dimensionless numbers unveiled the dominance of capillary and gravitational forces, which impacted cell velocity, leading to closer proximity to the wall and heightened viscous interaction with surrounding fluid particles. These interactions prompted shape alterations and reduced white blood cell area while increasing red blood cells. This study represents an effort in comprehending the effects of gravity on blood cells, offering insights into the intricate interplay between cellular dynamics and gravitational forces.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495877/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic cellular responses to gravitational forces: Exploring the impact on white blood cell(s).\",\"authors\":\"Anirudh Murali, Ram Rup Sarkar\",\"doi\":\"10.1063/5.0216617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the allure of space exploration and human spaceflight has surged, yet the effects of microgravity on the human body remain a significant concern. Immune and red blood cells rely on hematic or lymphatic streams as their primary means of transportation, posing notable challenges under microgravity conditions. This study sheds light on the intricate dynamics of cell behavior when suspended in bio-fluid under varying gravitational forces. Utilizing the dissipative particle dynamics approach, blood and white blood cells were modeled, with gravity applied as an external force along the vertical axis, ranging from 0 to 2 g in parameter sweeps. The results revealed discernible alterations in the cell shape and spatial alignment in response to gravity, quantified through metrics such as elongation and deformation indices, pitch angle, and normalized center of mass. Statistical analysis using the Mann-Whitney U test underscored clear distinctions between microgravity (<1 g) and hypergravity (>1 g) samples compared to normal gravity (1 g). Furthermore, the examination of forces exerted on the solid, including drag, shear stress, and solid forces, unveiled a reduction in the magnitude as the gravitational force increased. Additional analysis through dimensionless numbers unveiled the dominance of capillary and gravitational forces, which impacted cell velocity, leading to closer proximity to the wall and heightened viscous interaction with surrounding fluid particles. These interactions prompted shape alterations and reduced white blood cell area while increasing red blood cells. This study represents an effort in comprehending the effects of gravity on blood cells, offering insights into the intricate interplay between cellular dynamics and gravitational forces.</p>\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0216617\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0216617","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
近年来,太空探索和载人航天的吸引力急剧上升,但微重力对人体的影响仍然是一个重大问题。免疫细胞和红细胞依靠血液或淋巴流作为主要运输方式,这在微重力条件下带来了显著的挑战。这项研究揭示了细胞在不同重力作用下悬浮在生物流体中的复杂动态行为。利用耗散粒子动力学方法,对血液和白细胞进行建模,重力作为外力沿垂直轴施加,参数范围从 0 g 到 2 g。结果显示,细胞形状和空间排列在重力作用下发生了明显变化,这些变化通过伸长和变形指数、俯仰角和归一化质心等指标进行量化。使用 Mann-Whitney U 检验进行的统计分析表明,与正常重力(1 克)相比,微重力(1 克)样本之间存在明显差异。此外,对固体所受力(包括阻力、剪切应力和固体力)的研究表明,随着重力的增加,固体所受力的大小也在减小。通过无量纲数字进行的其他分析揭示了毛细管力和重力的主导作用,它们影响了细胞的速度,导致细胞更接近细胞壁,并增强了与周围流体颗粒的粘性相互作用。这些相互作用促使形状发生改变,在增加红细胞的同时减少了白细胞的面积。这项研究为理解重力对血细胞的影响做出了努力,为细胞动力学和重力之间错综复杂的相互作用提供了见解。
Dynamic cellular responses to gravitational forces: Exploring the impact on white blood cell(s).
In recent years, the allure of space exploration and human spaceflight has surged, yet the effects of microgravity on the human body remain a significant concern. Immune and red blood cells rely on hematic or lymphatic streams as their primary means of transportation, posing notable challenges under microgravity conditions. This study sheds light on the intricate dynamics of cell behavior when suspended in bio-fluid under varying gravitational forces. Utilizing the dissipative particle dynamics approach, blood and white blood cells were modeled, with gravity applied as an external force along the vertical axis, ranging from 0 to 2 g in parameter sweeps. The results revealed discernible alterations in the cell shape and spatial alignment in response to gravity, quantified through metrics such as elongation and deformation indices, pitch angle, and normalized center of mass. Statistical analysis using the Mann-Whitney U test underscored clear distinctions between microgravity (<1 g) and hypergravity (>1 g) samples compared to normal gravity (1 g). Furthermore, the examination of forces exerted on the solid, including drag, shear stress, and solid forces, unveiled a reduction in the magnitude as the gravitational force increased. Additional analysis through dimensionless numbers unveiled the dominance of capillary and gravitational forces, which impacted cell velocity, leading to closer proximity to the wall and heightened viscous interaction with surrounding fluid particles. These interactions prompted shape alterations and reduced white blood cell area while increasing red blood cells. This study represents an effort in comprehending the effects of gravity on blood cells, offering insights into the intricate interplay between cellular dynamics and gravitational forces.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...