在两个世界之间:以冠状动脉疾病诊断为例,研究人类专业知识与机器学习的交集。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-09-25 DOI:10.3390/bioengineering11100957
Ioannis D Apostolopoulos, Nikolaos I Papandrianos, Dimitrios J Apostolopoulos, Elpiniki Papageorgiou
{"title":"在两个世界之间:以冠状动脉疾病诊断为例,研究人类专业知识与机器学习的交集。","authors":"Ioannis D Apostolopoulos, Nikolaos I Papandrianos, Dimitrios J Apostolopoulos, Elpiniki Papageorgiou","doi":"10.3390/bioengineering11100957","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery disease (CAD) presents a significant global health burden, with early and accurate diagnostics crucial for effective management and treatment strategies. This study evaluates the efficacy of human evaluators compared to a Random Forest (RF) machine learning model in predicting CAD risk. It investigates the impact of incorporating human clinical judgments into the RF model's predictive capabilities. We recruited 606 patients from the Department of Nuclear Medicine at the University Hospital of Patras, Greece, from 16 February 2018 to 28 February 2022. Clinical data inputs included age, sex, comprehensive cardiovascular history (including prior myocardial infarction and revascularisation), CAD predisposing factors (such as hypertension, dyslipidemia, smoking, diabetes, and peripheral arteriopathy), baseline ECG abnormalities, and symptomatic descriptions ranging from asymptomatic states to angina-like symptoms and dyspnea on exertion. The diagnostic accuracies of human evaluators and the RF model (when trained with datasets inclusive of human judges' assessments) were comparable at 79% and 80.17%, respectively. However, the performance of the RF model notably declined to 73.76% when human clinical judgments were excluded from its training dataset. These results highlight a potential synergistic relationship between human expertise and advanced algorithmic predictions, suggesting a hybrid approach as a promising direction for enhancing CAD diagnostics.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Between Two Worlds: Investigating the Intersection of Human Expertise and Machine Learning in the Case of Coronary Artery Disease Diagnosis.\",\"authors\":\"Ioannis D Apostolopoulos, Nikolaos I Papandrianos, Dimitrios J Apostolopoulos, Elpiniki Papageorgiou\",\"doi\":\"10.3390/bioengineering11100957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronary artery disease (CAD) presents a significant global health burden, with early and accurate diagnostics crucial for effective management and treatment strategies. This study evaluates the efficacy of human evaluators compared to a Random Forest (RF) machine learning model in predicting CAD risk. It investigates the impact of incorporating human clinical judgments into the RF model's predictive capabilities. We recruited 606 patients from the Department of Nuclear Medicine at the University Hospital of Patras, Greece, from 16 February 2018 to 28 February 2022. Clinical data inputs included age, sex, comprehensive cardiovascular history (including prior myocardial infarction and revascularisation), CAD predisposing factors (such as hypertension, dyslipidemia, smoking, diabetes, and peripheral arteriopathy), baseline ECG abnormalities, and symptomatic descriptions ranging from asymptomatic states to angina-like symptoms and dyspnea on exertion. The diagnostic accuracies of human evaluators and the RF model (when trained with datasets inclusive of human judges' assessments) were comparable at 79% and 80.17%, respectively. However, the performance of the RF model notably declined to 73.76% when human clinical judgments were excluded from its training dataset. These results highlight a potential synergistic relationship between human expertise and advanced algorithmic predictions, suggesting a hybrid approach as a promising direction for enhancing CAD diagnostics.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11100957\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11100957","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

冠状动脉疾病(CAD)给全球健康带来沉重负担,早期准确诊断对有效管理和治疗策略至关重要。本研究评估了人类评估者与随机森林(RF)机器学习模型在预测 CAD 风险方面的功效。研究还探讨了将人类临床判断纳入 RF 模型预测能力的影响。我们于 2018 年 2 月 16 日至 2022 年 2 月 28 日从希腊帕特雷大学医院核医学科招募了 606 名患者。临床数据输入包括年龄、性别、全面的心血管病史(包括既往心肌梗死和血管再通)、CAD 易感因素(如高血压、血脂异常、吸烟、糖尿病和外周动脉病变)、基线心电图异常以及症状描述,范围从无症状状态到心绞痛样症状和劳力性呼吸困难。人类评估员和射频模型的诊断准确率(使用包含人类评委评估的数据集进行训练时)相当,分别为 79% 和 80.17%。然而,当 RF 模型的训练数据集中不包括人类临床判断时,其性能明显下降到 73.76%。这些结果凸显了人类专业知识与先进算法预测之间潜在的协同关系,表明混合方法是增强 CAD 诊断的一个有前途的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Between Two Worlds: Investigating the Intersection of Human Expertise and Machine Learning in the Case of Coronary Artery Disease Diagnosis.

Coronary artery disease (CAD) presents a significant global health burden, with early and accurate diagnostics crucial for effective management and treatment strategies. This study evaluates the efficacy of human evaluators compared to a Random Forest (RF) machine learning model in predicting CAD risk. It investigates the impact of incorporating human clinical judgments into the RF model's predictive capabilities. We recruited 606 patients from the Department of Nuclear Medicine at the University Hospital of Patras, Greece, from 16 February 2018 to 28 February 2022. Clinical data inputs included age, sex, comprehensive cardiovascular history (including prior myocardial infarction and revascularisation), CAD predisposing factors (such as hypertension, dyslipidemia, smoking, diabetes, and peripheral arteriopathy), baseline ECG abnormalities, and symptomatic descriptions ranging from asymptomatic states to angina-like symptoms and dyspnea on exertion. The diagnostic accuracies of human evaluators and the RF model (when trained with datasets inclusive of human judges' assessments) were comparable at 79% and 80.17%, respectively. However, the performance of the RF model notably declined to 73.76% when human clinical judgments were excluded from its training dataset. These results highlight a potential synergistic relationship between human expertise and advanced algorithmic predictions, suggesting a hybrid approach as a promising direction for enhancing CAD diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty. Characterization of MSC Growth, Differentiation, and EV Production in CNF Hydrogels Under Static and Dynamic Cultures in Hypoxic and Normoxic Conditions. Mamba- and ResNet-Based Dual-Branch Network for Ultrasound Thyroid Nodule Segmentation. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Wearable Online Freezing of Gait Detection and Cueing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1