{"title":"基于经验模式分解和变异模式分解的扩张型心肌病与缺血性心肌病心电图比较","authors":"Yuduan Han, Chonglong Ding, Shuo Yang, Yingfeng Ge, Jianan Yin, Yunyue Zhao, Jinxin Zhang","doi":"10.3390/bioengineering11101012","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM), yet their treatments and prognoses are quite different. Early differentiation between these conditions yields positive outcomes, but the gold standard (coronary angiography) is invasive. The potential use of ECG signals based on variational mode decomposition (VMD) as an alternative remains underexplored. An ECG dataset containing 87 subjects (44 DCM, 43 ICM) is pre-processed for denoising and heartbeat division. Firstly, the ECG signal is processed by empirical mode decomposition (EMD) and VMD. And then, five modes are determined by correlation analysis. Secondly, bispectral analysis is conducted on these modes, extracting corresponding bispectral and nonlinear features. Finally, the features are processed using five machine learning classification models, and a comparative assessment of their classification efficacy is facilitated. The results show that the technique proposed provides a better categorization for DCM and ICM using ECG signals compared to previous approaches, with a highest classification accuracy of 98.30%. Moreover, VMD consistently outperforms EMD under diverse conditions such as different modes, leads, and classifiers. The superiority of VMD on ECG analysis is verified.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of Electrocardiogram between Dilated Cardiomyopathy and Ischemic Cardiomyopathy Based on Empirical Mode Decomposition and Variational Mode Decomposition.\",\"authors\":\"Yuduan Han, Chonglong Ding, Shuo Yang, Yingfeng Ge, Jianan Yin, Yunyue Zhao, Jinxin Zhang\",\"doi\":\"10.3390/bioengineering11101012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM), yet their treatments and prognoses are quite different. Early differentiation between these conditions yields positive outcomes, but the gold standard (coronary angiography) is invasive. The potential use of ECG signals based on variational mode decomposition (VMD) as an alternative remains underexplored. An ECG dataset containing 87 subjects (44 DCM, 43 ICM) is pre-processed for denoising and heartbeat division. Firstly, the ECG signal is processed by empirical mode decomposition (EMD) and VMD. And then, five modes are determined by correlation analysis. Secondly, bispectral analysis is conducted on these modes, extracting corresponding bispectral and nonlinear features. Finally, the features are processed using five machine learning classification models, and a comparative assessment of their classification efficacy is facilitated. The results show that the technique proposed provides a better categorization for DCM and ICM using ECG signals compared to previous approaches, with a highest classification accuracy of 98.30%. Moreover, VMD consistently outperforms EMD under diverse conditions such as different modes, leads, and classifiers. The superiority of VMD on ECG analysis is verified.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11101012\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comparison of Electrocardiogram between Dilated Cardiomyopathy and Ischemic Cardiomyopathy Based on Empirical Mode Decomposition and Variational Mode Decomposition.
The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM), yet their treatments and prognoses are quite different. Early differentiation between these conditions yields positive outcomes, but the gold standard (coronary angiography) is invasive. The potential use of ECG signals based on variational mode decomposition (VMD) as an alternative remains underexplored. An ECG dataset containing 87 subjects (44 DCM, 43 ICM) is pre-processed for denoising and heartbeat division. Firstly, the ECG signal is processed by empirical mode decomposition (EMD) and VMD. And then, five modes are determined by correlation analysis. Secondly, bispectral analysis is conducted on these modes, extracting corresponding bispectral and nonlinear features. Finally, the features are processed using five machine learning classification models, and a comparative assessment of their classification efficacy is facilitated. The results show that the technique proposed provides a better categorization for DCM and ICM using ECG signals compared to previous approaches, with a highest classification accuracy of 98.30%. Moreover, VMD consistently outperforms EMD under diverse conditions such as different modes, leads, and classifiers. The superiority of VMD on ECG analysis is verified.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering