{"title":"用于心脏病预测的 XAI 增强投票集合模型:基于 SHAP 和 LIME 的方法","authors":"Nermeen Gamal Rezk, Samah Alshathri, Amged Sayed, Ezz El-Din Hemdan, Heba El-Behery","doi":"10.3390/bioengineering11101016","DOIUrl":null,"url":null,"abstract":"<p><p>Ensemble Learning (EL) has been used for almost ten years to classify heart diseases, but it is still difficult to grasp how the \"black boxes\", or non-interpretable models, behave inside. Predicting heart disease is crucial to healthcare, since it allows for prompt diagnosis and treatment of the patient's true state. Nonetheless, it is still difficult to forecast illness with any degree of accuracy. In this study, we have suggested a framework for the prediction of heart disease based on Explainable artificial intelligence (XAI)-based hybrid Ensemble Learning (EL) models, such as LightBoost and XGBoost algorithms. The main goals are to build predictive models and apply SHAP (SHapley Additive expPlanations) and LIME (Local Interpretable Model-agnostic Explanations) analysis to improve the interpretability of the models. We carefully construct our systems and test different hybrid ensemble learning algorithms to determine which model is best for heart disease prediction (HDP). The approach promotes interpretability and transparency when examining these widespread health issues. By combining hybrid Ensemble learning models with XAI, the important factors and risk signals that underpin the co-occurrence of heart disease are made visible. The accuracy, precision, and recall of such models were used to evaluate their efficacy. This study highlights how crucial it is for healthcare models to be transparent and recommends the inclusion of XAI to improve interpretability and medical decisionmaking.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504639/pdf/","citationCount":"0","resultStr":"{\"title\":\"XAI-Augmented Voting Ensemble Models for Heart Disease Prediction: A SHAP and LIME-Based Approach.\",\"authors\":\"Nermeen Gamal Rezk, Samah Alshathri, Amged Sayed, Ezz El-Din Hemdan, Heba El-Behery\",\"doi\":\"10.3390/bioengineering11101016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ensemble Learning (EL) has been used for almost ten years to classify heart diseases, but it is still difficult to grasp how the \\\"black boxes\\\", or non-interpretable models, behave inside. Predicting heart disease is crucial to healthcare, since it allows for prompt diagnosis and treatment of the patient's true state. Nonetheless, it is still difficult to forecast illness with any degree of accuracy. In this study, we have suggested a framework for the prediction of heart disease based on Explainable artificial intelligence (XAI)-based hybrid Ensemble Learning (EL) models, such as LightBoost and XGBoost algorithms. The main goals are to build predictive models and apply SHAP (SHapley Additive expPlanations) and LIME (Local Interpretable Model-agnostic Explanations) analysis to improve the interpretability of the models. We carefully construct our systems and test different hybrid ensemble learning algorithms to determine which model is best for heart disease prediction (HDP). The approach promotes interpretability and transparency when examining these widespread health issues. By combining hybrid Ensemble learning models with XAI, the important factors and risk signals that underpin the co-occurrence of heart disease are made visible. The accuracy, precision, and recall of such models were used to evaluate their efficacy. This study highlights how crucial it is for healthcare models to be transparent and recommends the inclusion of XAI to improve interpretability and medical decisionmaking.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11101016\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
XAI-Augmented Voting Ensemble Models for Heart Disease Prediction: A SHAP and LIME-Based Approach.
Ensemble Learning (EL) has been used for almost ten years to classify heart diseases, but it is still difficult to grasp how the "black boxes", or non-interpretable models, behave inside. Predicting heart disease is crucial to healthcare, since it allows for prompt diagnosis and treatment of the patient's true state. Nonetheless, it is still difficult to forecast illness with any degree of accuracy. In this study, we have suggested a framework for the prediction of heart disease based on Explainable artificial intelligence (XAI)-based hybrid Ensemble Learning (EL) models, such as LightBoost and XGBoost algorithms. The main goals are to build predictive models and apply SHAP (SHapley Additive expPlanations) and LIME (Local Interpretable Model-agnostic Explanations) analysis to improve the interpretability of the models. We carefully construct our systems and test different hybrid ensemble learning algorithms to determine which model is best for heart disease prediction (HDP). The approach promotes interpretability and transparency when examining these widespread health issues. By combining hybrid Ensemble learning models with XAI, the important factors and risk signals that underpin the co-occurrence of heart disease are made visible. The accuracy, precision, and recall of such models were used to evaluate their efficacy. This study highlights how crucial it is for healthcare models to be transparent and recommends the inclusion of XAI to improve interpretability and medical decisionmaking.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering