迈向神经康复的变革:人工智能对神经疾病诊断和治疗的影响。

IF 3.9 3区 工程技术 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomedicines Pub Date : 2024-10-21 DOI:10.3390/biomedicines12102415
Andrea Calderone, Desiree Latella, Mirjam Bonanno, Angelo Quartarone, Sepehr Mojdehdehbaher, Antonio Celesti, Rocco Salvatore Calabrò
{"title":"迈向神经康复的变革:人工智能对神经疾病诊断和治疗的影响。","authors":"Andrea Calderone, Desiree Latella, Mirjam Bonanno, Angelo Quartarone, Sepehr Mojdehdehbaher, Antonio Celesti, Rocco Salvatore Calabrò","doi":"10.3390/biomedicines12102415","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and Objectives:</b> Neurological disorders like stroke, spinal cord injury (SCI), and Parkinson's disease (PD) significantly affect global health, requiring accurate diagnosis and long-term neurorehabilitation. Artificial intelligence (AI), such as machine learning (ML), may enhance early diagnosis, personalize treatment, and optimize rehabilitation through predictive analytics, robotic systems, and brain-computer interfaces, improving outcomes for patients. This systematic review examines how AI and ML systems influence diagnosis and treatment in neurorehabilitation among neurological disorders. <b>Materials and Methods:</b> Studies were identified from an online search of PubMed, Web of Science, and Scopus databases with a search time range from 2014 to 2024. This review has been registered on Open OSF (n) EH9PT. <b>Results:</b> Recent advancements in AI and ML are revolutionizing motor rehabilitation and diagnosis for conditions like stroke, SCI, and PD, offering new opportunities for personalized care and improved outcomes. These technologies enhance clinical assessments, therapy personalization, and remote monitoring, providing more precise interventions and better long-term management. <b>Conclusions:</b> AI is revolutionizing neurorehabilitation, offering personalized, data-driven treatments that enhance recovery in neurological disorders. Future efforts should focus on large-scale validation, ethical considerations, and expanding access to advanced, home-based care.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders.\",\"authors\":\"Andrea Calderone, Desiree Latella, Mirjam Bonanno, Angelo Quartarone, Sepehr Mojdehdehbaher, Antonio Celesti, Rocco Salvatore Calabrò\",\"doi\":\"10.3390/biomedicines12102415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background and Objectives:</b> Neurological disorders like stroke, spinal cord injury (SCI), and Parkinson's disease (PD) significantly affect global health, requiring accurate diagnosis and long-term neurorehabilitation. Artificial intelligence (AI), such as machine learning (ML), may enhance early diagnosis, personalize treatment, and optimize rehabilitation through predictive analytics, robotic systems, and brain-computer interfaces, improving outcomes for patients. This systematic review examines how AI and ML systems influence diagnosis and treatment in neurorehabilitation among neurological disorders. <b>Materials and Methods:</b> Studies were identified from an online search of PubMed, Web of Science, and Scopus databases with a search time range from 2014 to 2024. This review has been registered on Open OSF (n) EH9PT. <b>Results:</b> Recent advancements in AI and ML are revolutionizing motor rehabilitation and diagnosis for conditions like stroke, SCI, and PD, offering new opportunities for personalized care and improved outcomes. These technologies enhance clinical assessments, therapy personalization, and remote monitoring, providing more precise interventions and better long-term management. <b>Conclusions:</b> AI is revolutionizing neurorehabilitation, offering personalized, data-driven treatments that enhance recovery in neurological disorders. Future efforts should focus on large-scale validation, ethical considerations, and expanding access to advanced, home-based care.</p>\",\"PeriodicalId\":8937,\"journal\":{\"name\":\"Biomedicines\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedicines12102415\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines12102415","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目标:中风、脊髓损伤(SCI)和帕金森病(PD)等神经系统疾病严重影响全球健康,需要准确诊断和长期神经康复。人工智能(AI),如机器学习(ML),可通过预测分析、机器人系统和脑机接口来加强早期诊断、个性化治疗和优化康复,从而改善患者的预后。这篇系统性综述探讨了人工智能和 ML 系统如何影响神经系统疾病中神经康复的诊断和治疗。材料与方法:通过对 PubMed、Web of Science 和 Scopus 数据库的在线检索,确定了相关研究,检索时间范围为 2014 年至 2024 年。本综述已在 Open OSF (n) EH9PT 上注册。结果人工智能和 ML 的最新进展正在彻底改变中风、SCI 和帕金森病等疾病的运动康复和诊断,为个性化护理和改善疗效提供了新的机遇。这些技术加强了临床评估、个性化治疗和远程监控,提供了更精确的干预和更好的长期管理。结论人工智能正在彻底改变神经康复,提供个性化、数据驱动的治疗,促进神经系统疾病的康复。未来的工作重点应放在大规模验证、伦理考量以及扩大先进的家庭护理的可及性上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders.

Background and Objectives: Neurological disorders like stroke, spinal cord injury (SCI), and Parkinson's disease (PD) significantly affect global health, requiring accurate diagnosis and long-term neurorehabilitation. Artificial intelligence (AI), such as machine learning (ML), may enhance early diagnosis, personalize treatment, and optimize rehabilitation through predictive analytics, robotic systems, and brain-computer interfaces, improving outcomes for patients. This systematic review examines how AI and ML systems influence diagnosis and treatment in neurorehabilitation among neurological disorders. Materials and Methods: Studies were identified from an online search of PubMed, Web of Science, and Scopus databases with a search time range from 2014 to 2024. This review has been registered on Open OSF (n) EH9PT. Results: Recent advancements in AI and ML are revolutionizing motor rehabilitation and diagnosis for conditions like stroke, SCI, and PD, offering new opportunities for personalized care and improved outcomes. These technologies enhance clinical assessments, therapy personalization, and remote monitoring, providing more precise interventions and better long-term management. Conclusions: AI is revolutionizing neurorehabilitation, offering personalized, data-driven treatments that enhance recovery in neurological disorders. Future efforts should focus on large-scale validation, ethical considerations, and expanding access to advanced, home-based care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedicines
Biomedicines Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍: Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.
期刊最新文献
"Hands-On" and "Hands-Off" Physiotherapy Treatments in Fibromyalgia Patients: A Systematic Review and Meta-Analysis. Collection, Establishment and Assessment of Complex Human Osteocartilaginous Explants for Modeling Osteoarthritis. A Pilot Study of the Role of Semaphorin 4A (sema4A) and 3C (sema3C) in Non-Muscle-Invasive Bladder Cancer (NMIBC). Demographic Characteristics and Survival in Young-Onset Colorectal Neuroendocrine Neoplasms. Absolute Quantitative Targeted Monitoring of Potential Plasma Protein Biomarkers: A Pilot Study on Healthy Individuals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1