Jie Dong, Cong Ding, Huahui Chen, Hailin Fu, Renbo Pei, Fafu Shen, Wei Wang
{"title":"施用外源绞股蓝内酯和绞股蓝内酯生物合成基因 GhMAX3/GhMAX4b 在棉花(Gossypium hirsutum L.)抗旱中的功能。","authors":"Jie Dong, Cong Ding, Huahui Chen, Hailin Fu, Renbo Pei, Fafu Shen, Wei Wang","doi":"10.1186/s12870-024-05726-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drought stress markedly constrains plant growth and diminishes crop productivity. Strigolactones (SLs) exert a beneficial influence on plant resilience to drought conditions. Nevertheless, the specific function of SLs in modulating cotton's response to drought stress remains to be elucidated.</p><p><strong>Results: </strong>In this study, we assess the impact of exogenous SL (rac-GR24) administration at various concentrations (0, 1, 5, 10, 20 µM) on cotton growth during drought stress. The findings reveal that cotton seedlings treated with 5 µM exogenous SL exhibit optimal mitigation of growth suppression induced by drought stress. Treatment with 5 µM exogenous SL under drought stress conditions enhances drought tolerance in cotton seedlings by augmenting photosynthetic efficiency, facilitating stomatal closure, diminishing reactive oxygen species (ROS) generation, alleviating membrane lipid peroxidation, enhancing the activity of antioxidant enzymes, elevating the levels of osmoregulatory compounds, and upregulating the expression of drought-responsive genes. The suppression of cotton SL biosynthesis genes, MORE AXILLARY GROWTH 3 (GhMAX3) and GhMAX4b, impairs the drought tolerance of cotton. Conversely, overexpression of GhMAX3 and GhMAX4b in respective Arabidopsis mutants ameliorates the drought-sensitive phenotype in these mutants.</p><p><strong>Conclusion: </strong>These observations underscore that SLs significantly bolster cotton's resistance to drought stress.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515143/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functions of exogenous strigolactone application and strigolactone biosynthesis genes GhMAX3/GhMAX4b in response to drought tolerance in cotton (Gossypium hirsutum L.).\",\"authors\":\"Jie Dong, Cong Ding, Huahui Chen, Hailin Fu, Renbo Pei, Fafu Shen, Wei Wang\",\"doi\":\"10.1186/s12870-024-05726-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Drought stress markedly constrains plant growth and diminishes crop productivity. Strigolactones (SLs) exert a beneficial influence on plant resilience to drought conditions. Nevertheless, the specific function of SLs in modulating cotton's response to drought stress remains to be elucidated.</p><p><strong>Results: </strong>In this study, we assess the impact of exogenous SL (rac-GR24) administration at various concentrations (0, 1, 5, 10, 20 µM) on cotton growth during drought stress. The findings reveal that cotton seedlings treated with 5 µM exogenous SL exhibit optimal mitigation of growth suppression induced by drought stress. Treatment with 5 µM exogenous SL under drought stress conditions enhances drought tolerance in cotton seedlings by augmenting photosynthetic efficiency, facilitating stomatal closure, diminishing reactive oxygen species (ROS) generation, alleviating membrane lipid peroxidation, enhancing the activity of antioxidant enzymes, elevating the levels of osmoregulatory compounds, and upregulating the expression of drought-responsive genes. The suppression of cotton SL biosynthesis genes, MORE AXILLARY GROWTH 3 (GhMAX3) and GhMAX4b, impairs the drought tolerance of cotton. Conversely, overexpression of GhMAX3 and GhMAX4b in respective Arabidopsis mutants ameliorates the drought-sensitive phenotype in these mutants.</p><p><strong>Conclusion: </strong>These observations underscore that SLs significantly bolster cotton's resistance to drought stress.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515143/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-024-05726-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05726-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Functions of exogenous strigolactone application and strigolactone biosynthesis genes GhMAX3/GhMAX4b in response to drought tolerance in cotton (Gossypium hirsutum L.).
Background: Drought stress markedly constrains plant growth and diminishes crop productivity. Strigolactones (SLs) exert a beneficial influence on plant resilience to drought conditions. Nevertheless, the specific function of SLs in modulating cotton's response to drought stress remains to be elucidated.
Results: In this study, we assess the impact of exogenous SL (rac-GR24) administration at various concentrations (0, 1, 5, 10, 20 µM) on cotton growth during drought stress. The findings reveal that cotton seedlings treated with 5 µM exogenous SL exhibit optimal mitigation of growth suppression induced by drought stress. Treatment with 5 µM exogenous SL under drought stress conditions enhances drought tolerance in cotton seedlings by augmenting photosynthetic efficiency, facilitating stomatal closure, diminishing reactive oxygen species (ROS) generation, alleviating membrane lipid peroxidation, enhancing the activity of antioxidant enzymes, elevating the levels of osmoregulatory compounds, and upregulating the expression of drought-responsive genes. The suppression of cotton SL biosynthesis genes, MORE AXILLARY GROWTH 3 (GhMAX3) and GhMAX4b, impairs the drought tolerance of cotton. Conversely, overexpression of GhMAX3 and GhMAX4b in respective Arabidopsis mutants ameliorates the drought-sensitive phenotype in these mutants.
Conclusion: These observations underscore that SLs significantly bolster cotton's resistance to drought stress.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.