空间解析代谢组学:从代谢物图谱到功能可视化。

IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Clinical and Translational Medicine Pub Date : 2024-10-25 DOI:10.1002/ctm2.70031
Xinyue Min, Yiran Zhao, Meng Yu, Wenchao Zhang, Xinyi Jiang, Kaijing Guo, Xiangyi Wang, Jianpeng Huang, Tong Li, Lixin Sun, Jiuming He
{"title":"空间解析代谢组学:从代谢物图谱到功能可视化。","authors":"Xinyue Min,&nbsp;Yiran Zhao,&nbsp;Meng Yu,&nbsp;Wenchao Zhang,&nbsp;Xinyi Jiang,&nbsp;Kaijing Guo,&nbsp;Xiangyi Wang,&nbsp;Jianpeng Huang,&nbsp;Tong Li,&nbsp;Lixin Sun,&nbsp;Jiuming He","doi":"10.1002/ctm2.70031","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Mass spectrometry imaging (MSI)-based spatially resolved metabolomics addresses the limitations inherent in traditional liquid chromatography-tandem mass spectrometry (LC–MS)-based metabolomics, particularly the loss of spatial context within heterogeneous tissues. MSI not only enhances our understanding of disease aetiology but also aids in the identification of biomarkers and the assessment of drug toxicity and therapeutic efficacy by converting invisible metabolites and biological networks into visually rendered image data. In this comprehensive review, we illuminate the key advancements in MSI-driven spatially resolved metabolomics over the past few years. We first outline recent innovations in preprocessing methodologies and MSI instrumentation that improve the sensitivity and comprehensiveness of metabolite detection. We then delve into the progress made in functional visualization techniques, which enhance the precision of metabolite identification and annotation. Ultimately, we discuss the significant potential applications of spatially resolved metabolomics technology in translational medicine and drug development, offering new perspectives for future research and clinical translation.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>MSI-driven spatial metabolomics preserves metabolite spatial information, enhancing disease analysis and biomarker discovery.</li>\n \n <li>Advances in MSI technology improve detection sensitivity and accuracy, expanding bioanalytical applications.</li>\n \n <li>Enhanced visualization techniques refine metabolite identification and spatial distribution analysis.</li>\n \n <li>Integration of MSI with AI promises to advance precision medicine and accelerate drug development.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatially resolved metabolomics: From metabolite mapping to function visualising\",\"authors\":\"Xinyue Min,&nbsp;Yiran Zhao,&nbsp;Meng Yu,&nbsp;Wenchao Zhang,&nbsp;Xinyi Jiang,&nbsp;Kaijing Guo,&nbsp;Xiangyi Wang,&nbsp;Jianpeng Huang,&nbsp;Tong Li,&nbsp;Lixin Sun,&nbsp;Jiuming He\",\"doi\":\"10.1002/ctm2.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Mass spectrometry imaging (MSI)-based spatially resolved metabolomics addresses the limitations inherent in traditional liquid chromatography-tandem mass spectrometry (LC–MS)-based metabolomics, particularly the loss of spatial context within heterogeneous tissues. MSI not only enhances our understanding of disease aetiology but also aids in the identification of biomarkers and the assessment of drug toxicity and therapeutic efficacy by converting invisible metabolites and biological networks into visually rendered image data. In this comprehensive review, we illuminate the key advancements in MSI-driven spatially resolved metabolomics over the past few years. We first outline recent innovations in preprocessing methodologies and MSI instrumentation that improve the sensitivity and comprehensiveness of metabolite detection. We then delve into the progress made in functional visualization techniques, which enhance the precision of metabolite identification and annotation. Ultimately, we discuss the significant potential applications of spatially resolved metabolomics technology in translational medicine and drug development, offering new perspectives for future research and clinical translation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Highlights</h3>\\n \\n <div>\\n <ul>\\n \\n <li>MSI-driven spatial metabolomics preserves metabolite spatial information, enhancing disease analysis and biomarker discovery.</li>\\n \\n <li>Advances in MSI technology improve detection sensitivity and accuracy, expanding bioanalytical applications.</li>\\n \\n <li>Enhanced visualization techniques refine metabolite identification and spatial distribution analysis.</li>\\n \\n <li>Integration of MSI with AI promises to advance precision medicine and accelerate drug development.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":10189,\"journal\":{\"name\":\"Clinical and Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70031\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70031","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

基于质谱成像(MSI)的空间分辨代谢组学解决了传统液相色谱-串联质谱法(LC-MS)代谢组学固有的局限性,特别是异质组织内空间背景的缺失。MSI 通过将不可见的代谢物和生物网络转化为可视化的图像数据,不仅增强了我们对疾病病因的了解,还有助于生物标记物的鉴定以及药物毒性和疗效的评估。在这篇综述中,我们阐述了过去几年 MSI 驱动的空间解析代谢组学的主要进展。我们首先概述了预处理方法和 MSI 仪器方面的最新创新,这些创新提高了代谢物检测的灵敏度和全面性。然后,我们深入探讨了功能可视化技术的进展,这些技术提高了代谢物鉴定和注释的精确度。最后,我们讨论了空间解析代谢组学技术在转化医学和药物开发中的重要潜在应用,为未来的研究和临床转化提供了新的视角。亮点MSI 驱动的空间代谢组学保留了代谢物的空间信息,加强了疾病分析和生物标记物的发现。MSI 技术的进步提高了检测灵敏度和准确性,扩大了生物分析的应用范围。增强的可视化技术完善了代谢物鉴定和空间分布分析。MSI 与人工智能的结合有望推动精准医学的发展并加速药物开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatially resolved metabolomics: From metabolite mapping to function visualising

Mass spectrometry imaging (MSI)-based spatially resolved metabolomics addresses the limitations inherent in traditional liquid chromatography-tandem mass spectrometry (LC–MS)-based metabolomics, particularly the loss of spatial context within heterogeneous tissues. MSI not only enhances our understanding of disease aetiology but also aids in the identification of biomarkers and the assessment of drug toxicity and therapeutic efficacy by converting invisible metabolites and biological networks into visually rendered image data. In this comprehensive review, we illuminate the key advancements in MSI-driven spatially resolved metabolomics over the past few years. We first outline recent innovations in preprocessing methodologies and MSI instrumentation that improve the sensitivity and comprehensiveness of metabolite detection. We then delve into the progress made in functional visualization techniques, which enhance the precision of metabolite identification and annotation. Ultimately, we discuss the significant potential applications of spatially resolved metabolomics technology in translational medicine and drug development, offering new perspectives for future research and clinical translation.

Highlights

  • MSI-driven spatial metabolomics preserves metabolite spatial information, enhancing disease analysis and biomarker discovery.
  • Advances in MSI technology improve detection sensitivity and accuracy, expanding bioanalytical applications.
  • Enhanced visualization techniques refine metabolite identification and spatial distribution analysis.
  • Integration of MSI with AI promises to advance precision medicine and accelerate drug development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
1.90%
发文量
450
审稿时长
4 weeks
期刊介绍: Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.
期刊最新文献
Genetic variants explain ancestry-related differences in type 2 diabetes risk Induced collagen type-I secretion by hepatocytes of the melanoma liver metastasis is associated with a reduction in tumour-infiltrating lymphocytes Neutrophil pyroptosis regulates corneal wound healing and post-injury neovascularisation Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1