Shashank Gupta, Arturo Vera-Ponce de León, Miyako Kodama, Matthias Hoetzinger, Cecilie G. Clausen, Louisa Pless, Ana R. A. Verissimo, Bruno Stengel, Virginia Calabuig, Renate Kvingedal, Stanko Skugor, Bjørge Westereng, Thomas Nelson Harvey, Anna Nordborg, Stefan Bertilsson, Morten T. Limborg, Turid Mørkøre, Simen R. Sandve, Phillip B. Pope, Torgeir R. Hvidsten, Sabina Leanti La Rosa
{"title":"需要高分辨率的肠道微生物组特征描述,以设计可持续水产养殖生产的高效战略。","authors":"Shashank Gupta, Arturo Vera-Ponce de León, Miyako Kodama, Matthias Hoetzinger, Cecilie G. Clausen, Louisa Pless, Ana R. A. Verissimo, Bruno Stengel, Virginia Calabuig, Renate Kvingedal, Stanko Skugor, Bjørge Westereng, Thomas Nelson Harvey, Anna Nordborg, Stefan Bertilsson, Morten T. Limborg, Turid Mørkøre, Simen R. Sandve, Phillip B. Pope, Torgeir R. Hvidsten, Sabina Leanti La Rosa","doi":"10.1038/s42003-024-07087-4","DOIUrl":null,"url":null,"abstract":"Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.2% in the diet, had negligible effects on both host gene expression, and gut microbiome structure and function under the studied conditions. While a subsequent trial using a higher (4%) dietary inclusion of β-mannan significantly shifted the gut microbiome composition, there were still no biologically relevant effects on salmon metabolism and physiology. Only a single Burkholderia-Caballeronia-Paraburkholderia (BCP) population demonstrated consistent and significant abundance shifts across both feeding trials, although with no evidence of β-mannan utilization capabilities or changes in gene transcripts for producing metabolites beneficial to the host. In light of these findings, we revisited our omics data to predict and outline previously unreported and potentially beneficial endogenous lactic acid bacteria that should be targeted with future, conceivably more suitable, MDF strategies for salmon. A multi-omic approach enables the reconstruction of microbial metabolic dynamics in the salmon gut in response to feed and feed supplements, outlining novel and potentially beneficial strategies to manipulate the salmon gut microbiota.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511968/pdf/","citationCount":"0","resultStr":"{\"title\":\"The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production\",\"authors\":\"Shashank Gupta, Arturo Vera-Ponce de León, Miyako Kodama, Matthias Hoetzinger, Cecilie G. Clausen, Louisa Pless, Ana R. A. Verissimo, Bruno Stengel, Virginia Calabuig, Renate Kvingedal, Stanko Skugor, Bjørge Westereng, Thomas Nelson Harvey, Anna Nordborg, Stefan Bertilsson, Morten T. Limborg, Turid Mørkøre, Simen R. Sandve, Phillip B. Pope, Torgeir R. Hvidsten, Sabina Leanti La Rosa\",\"doi\":\"10.1038/s42003-024-07087-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.2% in the diet, had negligible effects on both host gene expression, and gut microbiome structure and function under the studied conditions. While a subsequent trial using a higher (4%) dietary inclusion of β-mannan significantly shifted the gut microbiome composition, there were still no biologically relevant effects on salmon metabolism and physiology. Only a single Burkholderia-Caballeronia-Paraburkholderia (BCP) population demonstrated consistent and significant abundance shifts across both feeding trials, although with no evidence of β-mannan utilization capabilities or changes in gene transcripts for producing metabolites beneficial to the host. In light of these findings, we revisited our omics data to predict and outline previously unreported and potentially beneficial endogenous lactic acid bacteria that should be targeted with future, conceivably more suitable, MDF strategies for salmon. A multi-omic approach enables the reconstruction of microbial metabolic dynamics in the salmon gut in response to feed and feed supplements, outlining novel and potentially beneficial strategies to manipulate the salmon gut microbiota.\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s42003-024-07087-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07087-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production
Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.2% in the diet, had negligible effects on both host gene expression, and gut microbiome structure and function under the studied conditions. While a subsequent trial using a higher (4%) dietary inclusion of β-mannan significantly shifted the gut microbiome composition, there were still no biologically relevant effects on salmon metabolism and physiology. Only a single Burkholderia-Caballeronia-Paraburkholderia (BCP) population demonstrated consistent and significant abundance shifts across both feeding trials, although with no evidence of β-mannan utilization capabilities or changes in gene transcripts for producing metabolites beneficial to the host. In light of these findings, we revisited our omics data to predict and outline previously unreported and potentially beneficial endogenous lactic acid bacteria that should be targeted with future, conceivably more suitable, MDF strategies for salmon. A multi-omic approach enables the reconstruction of microbial metabolic dynamics in the salmon gut in response to feed and feed supplements, outlining novel and potentially beneficial strategies to manipulate the salmon gut microbiota.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.