{"title":"密码子最优性影响斑马鱼的平衡基因表达","authors":"Michelle L DeVore, Ariel A Bazzini","doi":"10.1093/g3journal/jkae247","DOIUrl":null,"url":null,"abstract":"<p><p>The ribosome plays a crucial role in translating mRNA into protein; however, the genetic code extends beyond merely specifying amino acids. Upon translation, codons, the three-nucleotide sequences interpreted by ribosomes, have regulatory properties affecting mRNA stability, a phenomenon known as codon optimality. Codon optimality has been previously observed in vertebrates during embryogenesis, where specific codons can influence the stability and degradation rates of mRNA transcripts. In our previous work, we demonstrated that codon optimality impacts mRNA stability in human cell lines. However, the extent to which codon content influences vertebrate gene expression in vivo remained unclear. In this study, we expand on our previous findings by demonstrating that codon optimality has a robust effect on homeostatic mRNA and protein levels in whole zebrafish during normal physiological conditions. Using reporters with nearly identical nucleotide sequences but different codon compositions, all expressed from the same genomic locus, we show that codon composition can significantly influence gene expression. This study provides new insights into the regulatory roles of codon usage in vertebrate gene expression and underscores the importance of considering codon optimality in genetic and translational research. These findings have broad implications for understanding the complexities of gene regulation and could inform the design of synthetic genes and therapeutic strategies targeting mRNA stability.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codon optimality influences homeostatic gene expression in zebrafish.\",\"authors\":\"Michelle L DeVore, Ariel A Bazzini\",\"doi\":\"10.1093/g3journal/jkae247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ribosome plays a crucial role in translating mRNA into protein; however, the genetic code extends beyond merely specifying amino acids. Upon translation, codons, the three-nucleotide sequences interpreted by ribosomes, have regulatory properties affecting mRNA stability, a phenomenon known as codon optimality. Codon optimality has been previously observed in vertebrates during embryogenesis, where specific codons can influence the stability and degradation rates of mRNA transcripts. In our previous work, we demonstrated that codon optimality impacts mRNA stability in human cell lines. However, the extent to which codon content influences vertebrate gene expression in vivo remained unclear. In this study, we expand on our previous findings by demonstrating that codon optimality has a robust effect on homeostatic mRNA and protein levels in whole zebrafish during normal physiological conditions. Using reporters with nearly identical nucleotide sequences but different codon compositions, all expressed from the same genomic locus, we show that codon composition can significantly influence gene expression. This study provides new insights into the regulatory roles of codon usage in vertebrate gene expression and underscores the importance of considering codon optimality in genetic and translational research. These findings have broad implications for understanding the complexities of gene regulation and could inform the design of synthetic genes and therapeutic strategies targeting mRNA stability.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae247\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae247","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Codon optimality influences homeostatic gene expression in zebrafish.
The ribosome plays a crucial role in translating mRNA into protein; however, the genetic code extends beyond merely specifying amino acids. Upon translation, codons, the three-nucleotide sequences interpreted by ribosomes, have regulatory properties affecting mRNA stability, a phenomenon known as codon optimality. Codon optimality has been previously observed in vertebrates during embryogenesis, where specific codons can influence the stability and degradation rates of mRNA transcripts. In our previous work, we demonstrated that codon optimality impacts mRNA stability in human cell lines. However, the extent to which codon content influences vertebrate gene expression in vivo remained unclear. In this study, we expand on our previous findings by demonstrating that codon optimality has a robust effect on homeostatic mRNA and protein levels in whole zebrafish during normal physiological conditions. Using reporters with nearly identical nucleotide sequences but different codon compositions, all expressed from the same genomic locus, we show that codon composition can significantly influence gene expression. This study provides new insights into the regulatory roles of codon usage in vertebrate gene expression and underscores the importance of considering codon optimality in genetic and translational research. These findings have broad implications for understanding the complexities of gene regulation and could inform the design of synthetic genes and therapeutic strategies targeting mRNA stability.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.