职业性胆管癌的多阶段癌变:克隆扩张和风险估计的影响。

IF 2.7 4区 医学 Q2 GENETICS & HEREDITY Genes and Environment Pub Date : 2024-10-24 DOI:10.1186/s41021-024-00315-7
Masahiko Watanabe, Hiroshi Haeno, Sachiyo Mimaki, Katsuya Tsuchihara
{"title":"职业性胆管癌的多阶段癌变:克隆扩张和风险估计的影响。","authors":"Masahiko Watanabe, Hiroshi Haeno, Sachiyo Mimaki, Katsuya Tsuchihara","doi":"10.1186/s41021-024-00315-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Both mutation induction and clonal expansion of mutated cells cause cancer. The probability of cancer development depends on mutations, clonal growth rates, and carcinogenic mechanisms. A recent study showed cases of occupational cholangiocarcinomas that originate multifocally, with higher mutation burden levels than those in common cholangiocarcinomas. This study aimed to identify the effect of clonal expansion on and estimate the risk of occupational and common intrahepatic cholangiocarcinomas (ICCs) using a multistage model modified to include the effect of cell expansion at any carcinogenic stage.</p><p><strong>Methods: </strong>The age-specific incidence of common ICC estimated from the Vital Statistics in Japan and the prognosis of ICC, and mutation frequencies of occupational and common ICC available from the previous report, were applied to a multistage model modified with cell proliferation effects. From the fittest model, the risk after exposure was estimated.</p><p><strong>Results: </strong>The required number of stages for carcinogenesis was estimated to be three based on the incidences and mutation frequencies of occupational and common ICCs. Based on this estimation, the predicted incidence curve under the model was similar to that estimated from the ICC mortality rate, except for older adults. The model indicated a minor effect of clonal expansion on the observed occupational ICC risk. It predicted a rapid decrease in ICC risk after the cessation of occupational exposure, although the time of clinical detection of cancer after the exposure was affected by latency. The model predicted an increase in cancer risk in older adults caused by cell expansion and common background mutations. However, the risk in older adults was overestimated in the case of common ICC; this divergence could influence occupational ICC cases.</p><p><strong>Conclusions: </strong>Three-stage ICC carcinogenesis has been proposed. The high mutation burden levels caused by occupational exposure led to an immediate incidence of cancer. After a long period of relatively low cancer risk, an increased risk in older adults was also predicted.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"46 1","pages":"21"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515581/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multistage carcinogenesis in occupational cholangiocarcinoma: the impact of clonal expansion and risk estimation.\",\"authors\":\"Masahiko Watanabe, Hiroshi Haeno, Sachiyo Mimaki, Katsuya Tsuchihara\",\"doi\":\"10.1186/s41021-024-00315-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Both mutation induction and clonal expansion of mutated cells cause cancer. The probability of cancer development depends on mutations, clonal growth rates, and carcinogenic mechanisms. A recent study showed cases of occupational cholangiocarcinomas that originate multifocally, with higher mutation burden levels than those in common cholangiocarcinomas. This study aimed to identify the effect of clonal expansion on and estimate the risk of occupational and common intrahepatic cholangiocarcinomas (ICCs) using a multistage model modified to include the effect of cell expansion at any carcinogenic stage.</p><p><strong>Methods: </strong>The age-specific incidence of common ICC estimated from the Vital Statistics in Japan and the prognosis of ICC, and mutation frequencies of occupational and common ICC available from the previous report, were applied to a multistage model modified with cell proliferation effects. From the fittest model, the risk after exposure was estimated.</p><p><strong>Results: </strong>The required number of stages for carcinogenesis was estimated to be three based on the incidences and mutation frequencies of occupational and common ICCs. Based on this estimation, the predicted incidence curve under the model was similar to that estimated from the ICC mortality rate, except for older adults. The model indicated a minor effect of clonal expansion on the observed occupational ICC risk. It predicted a rapid decrease in ICC risk after the cessation of occupational exposure, although the time of clinical detection of cancer after the exposure was affected by latency. The model predicted an increase in cancer risk in older adults caused by cell expansion and common background mutations. However, the risk in older adults was overestimated in the case of common ICC; this divergence could influence occupational ICC cases.</p><p><strong>Conclusions: </strong>Three-stage ICC carcinogenesis has been proposed. The high mutation burden levels caused by occupational exposure led to an immediate incidence of cancer. After a long period of relatively low cancer risk, an increased risk in older adults was also predicted.</p>\",\"PeriodicalId\":12709,\"journal\":{\"name\":\"Genes and Environment\",\"volume\":\"46 1\",\"pages\":\"21\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Environment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41021-024-00315-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-024-00315-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:突变诱导和突变细胞的克隆扩增都会导致癌症。癌症发生的概率取决于突变、克隆生长率和致癌机制。最近的一项研究显示,多发性职业性胆管癌的突变负荷水平高于普通胆管癌。本研究旨在利用一个多阶段模型来确定克隆扩增对职业性胆管癌和普通肝内胆管癌(ICCs)的影响,并估算其风险,该模型经过修改,包含了任何致癌阶段细胞扩增的影响:方法:将日本生命统计中估算的普通 ICC 的特定年龄发病率和 ICC 的预后,以及之前报告中提供的职业性和普通 ICC 的突变频率应用于包含细胞增殖效应的多阶段模型。从最合适的模型中估算出暴露后的风险:结果:根据职业性和常见 ICC 的发病率和突变频率,估计致癌所需的阶段数为三个。根据这一估算,除老年人外,该模型预测的发病率曲线与根据 ICC 死亡率估算的发病率曲线相似。该模型表明,克隆扩增对观察到的职业性 ICC 风险影响较小。该模型预测在停止职业接触后,ICC 风险会迅速降低,尽管接触后临床发现癌症的时间会受到潜伏期的影响。该模型预测,细胞扩增和常见背景突变会增加老年人患癌症的风险。然而,在普通 ICC 的情况下,老年人的风险被高估了;这种差异可能会影响职业性 ICC 病例:结论:有人提出了 ICC 癌变的三个阶段。职业暴露造成的高突变负荷水平导致了癌症的直接发病率。在癌症风险相对较低的一段较长时期后,预计老年人的癌症风险也会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multistage carcinogenesis in occupational cholangiocarcinoma: the impact of clonal expansion and risk estimation.

Background: Both mutation induction and clonal expansion of mutated cells cause cancer. The probability of cancer development depends on mutations, clonal growth rates, and carcinogenic mechanisms. A recent study showed cases of occupational cholangiocarcinomas that originate multifocally, with higher mutation burden levels than those in common cholangiocarcinomas. This study aimed to identify the effect of clonal expansion on and estimate the risk of occupational and common intrahepatic cholangiocarcinomas (ICCs) using a multistage model modified to include the effect of cell expansion at any carcinogenic stage.

Methods: The age-specific incidence of common ICC estimated from the Vital Statistics in Japan and the prognosis of ICC, and mutation frequencies of occupational and common ICC available from the previous report, were applied to a multistage model modified with cell proliferation effects. From the fittest model, the risk after exposure was estimated.

Results: The required number of stages for carcinogenesis was estimated to be three based on the incidences and mutation frequencies of occupational and common ICCs. Based on this estimation, the predicted incidence curve under the model was similar to that estimated from the ICC mortality rate, except for older adults. The model indicated a minor effect of clonal expansion on the observed occupational ICC risk. It predicted a rapid decrease in ICC risk after the cessation of occupational exposure, although the time of clinical detection of cancer after the exposure was affected by latency. The model predicted an increase in cancer risk in older adults caused by cell expansion and common background mutations. However, the risk in older adults was overestimated in the case of common ICC; this divergence could influence occupational ICC cases.

Conclusions: Three-stage ICC carcinogenesis has been proposed. The high mutation burden levels caused by occupational exposure led to an immediate incidence of cancer. After a long period of relatively low cancer risk, an increased risk in older adults was also predicted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes and Environment
Genes and Environment Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
27 weeks
期刊介绍: Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences. Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.
期刊最新文献
Structure-mutagenicity relationships on quinoline and indole analogues in the Ames test. Elimination of mutagenic contaminants from water using cellulose bearing ferrous-phthalocyanine. Multistage carcinogenesis in occupational cholangiocarcinoma: the impact of clonal expansion and risk estimation. Effect of sequencing platforms on the sensitivity of chemical mutation detection using Hawk-Seq™. Split MutT prevents the mutator phenotype of mutT-deficient Escherichia coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1