曲霉次生代谢物基因簇的基因组定位偏差及其与组蛋白修饰的关联。

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2024-11-01 DOI:10.1093/gbe/evae228
Xin Zhang, Iseult Leahy, Jérȏme Collemare, Michael F Seidl
{"title":"曲霉次生代谢物基因簇的基因组定位偏差及其与组蛋白修饰的关联。","authors":"Xin Zhang, Iseult Leahy, Jérȏme Collemare, Michael F Seidl","doi":"10.1093/gbe/evae228","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi are well-known producers of bioactive secondary metabolites (SMs), which have been exploited for decades by humankind for various medical applications like therapeutics and antibiotics. SMs are synthesized by biosynthetic gene clusters (BGCs)-physically co-localized and co-regulated genes. Because BGCs are often regulated by histone post-translational modifications (PTMs), it was suggested that their chromosomal location is important for their expression. Studies in a few fungal species indicated an enrichment of BGCs in sub-telomeric regions; however, there is no evidence that BGCs with distinct genomic localization are regulated by different histone PTMs. Here, we used 174 Aspergillus species covering 22 sections to determine the correlation between BGC genomic localization, gene expression, and histone PTMs. We found a high abundance and diversity of SM backbone genes across the Aspergillus genus, with notable unique genes within sections. Being unique or conserved in many species, BGCs showed a strong bias for being localized in low-synteny regions, regardless of their position in chromosomes. Using chromosome-level assemblies, we also confirmed a significantly biased localization in sub-telomeric regions. Notably, SM backbone genes in sub-telomeric regions and about half of those in low-synteny regions exhibit higher gene expression variability, likely due to the similar higher variability in H3K4me3 and H3K36me3 histone PTMs; while variations in histone H3 acetylation and H3K9me3 are not correlated to genomic localization and expression variation, as analyzed in two Aspergillus species. Expression variability across four Aspergillus species further supports that BGCs tend to be located in low-synteny regions and that regulation of expression in those regions likely involves different histone PTMs than the most commonly studied modifications.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542625/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic Localization Bias of Secondary Metabolite Gene Clusters and Association with Histone Modifications in Aspergillus.\",\"authors\":\"Xin Zhang, Iseult Leahy, Jérȏme Collemare, Michael F Seidl\",\"doi\":\"10.1093/gbe/evae228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungi are well-known producers of bioactive secondary metabolites (SMs), which have been exploited for decades by humankind for various medical applications like therapeutics and antibiotics. SMs are synthesized by biosynthetic gene clusters (BGCs)-physically co-localized and co-regulated genes. Because BGCs are often regulated by histone post-translational modifications (PTMs), it was suggested that their chromosomal location is important for their expression. Studies in a few fungal species indicated an enrichment of BGCs in sub-telomeric regions; however, there is no evidence that BGCs with distinct genomic localization are regulated by different histone PTMs. Here, we used 174 Aspergillus species covering 22 sections to determine the correlation between BGC genomic localization, gene expression, and histone PTMs. We found a high abundance and diversity of SM backbone genes across the Aspergillus genus, with notable unique genes within sections. Being unique or conserved in many species, BGCs showed a strong bias for being localized in low-synteny regions, regardless of their position in chromosomes. Using chromosome-level assemblies, we also confirmed a significantly biased localization in sub-telomeric regions. Notably, SM backbone genes in sub-telomeric regions and about half of those in low-synteny regions exhibit higher gene expression variability, likely due to the similar higher variability in H3K4me3 and H3K36me3 histone PTMs; while variations in histone H3 acetylation and H3K9me3 are not correlated to genomic localization and expression variation, as analyzed in two Aspergillus species. Expression variability across four Aspergillus species further supports that BGCs tend to be located in low-synteny regions and that regulation of expression in those regions likely involves different histone PTMs than the most commonly studied modifications.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542625/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae228\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae228","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真菌是众所周知的生物活性次生代谢物(SMs)的生产者,几十年来,人类一直在利用这些次生代谢物进行各种医疗应用,如治疗和抗生素。次生代谢物是由生物合成基因簇(BGC)合成的--这些基因在物理上共定位和共调控。由于 BGC 通常受组蛋白翻译后修饰(PTM)的调控,因此有人认为它们的染色体位置对其表达很重要。对一些真菌物种的研究表明,BGCs 富集于亚组粒区;然而,没有证据表明基因组定位不同的 BGCs 受不同组蛋白 PTMs 的调控。在这里,我们使用了 174 种曲霉菌(涵盖 22 个部分)来确定 BGC 基因组定位、基因表达和组蛋白 PTM 之间的相关性。我们发现在整个曲霉属中,SM骨干基因的丰度和多样性都很高,在不同的部分中还存在显著的独特基因。BGC在许多物种中都是独特或保守的,无论它们在染色体中的位置如何,它们都强烈倾向于定位在低合成度区域。通过染色体水平的组装,我们还证实了染色体骨架基因明显偏向于定位在亚端粒区域。值得注意的是,在亚着丝粒区的SM骨干基因和大约一半在低合成度区的SM骨干基因表现出较高的基因表达变异性,这可能是由于H3K4me3和H3K36me3组蛋白PTMs具有类似的较高变异性;而组蛋白H3乙酰化和H3K9me3的变异与基因组定位和表达变异无关,这是在两个曲霉物种中分析的结果。四个曲霉菌种的表达变异进一步证明,BGCs 往往位于低合成度区域,这些区域的表达调控可能涉及与最常研究的修饰不同的组蛋白 PTM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genomic Localization Bias of Secondary Metabolite Gene Clusters and Association with Histone Modifications in Aspergillus.

Fungi are well-known producers of bioactive secondary metabolites (SMs), which have been exploited for decades by humankind for various medical applications like therapeutics and antibiotics. SMs are synthesized by biosynthetic gene clusters (BGCs)-physically co-localized and co-regulated genes. Because BGCs are often regulated by histone post-translational modifications (PTMs), it was suggested that their chromosomal location is important for their expression. Studies in a few fungal species indicated an enrichment of BGCs in sub-telomeric regions; however, there is no evidence that BGCs with distinct genomic localization are regulated by different histone PTMs. Here, we used 174 Aspergillus species covering 22 sections to determine the correlation between BGC genomic localization, gene expression, and histone PTMs. We found a high abundance and diversity of SM backbone genes across the Aspergillus genus, with notable unique genes within sections. Being unique or conserved in many species, BGCs showed a strong bias for being localized in low-synteny regions, regardless of their position in chromosomes. Using chromosome-level assemblies, we also confirmed a significantly biased localization in sub-telomeric regions. Notably, SM backbone genes in sub-telomeric regions and about half of those in low-synteny regions exhibit higher gene expression variability, likely due to the similar higher variability in H3K4me3 and H3K36me3 histone PTMs; while variations in histone H3 acetylation and H3K9me3 are not correlated to genomic localization and expression variation, as analyzed in two Aspergillus species. Expression variability across four Aspergillus species further supports that BGCs tend to be located in low-synteny regions and that regulation of expression in those regions likely involves different histone PTMs than the most commonly studied modifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Chromosome-scale reference genome and RAD-based genetic map of yellow starthistle (Centaurea solstitialis) reveal putative structural variation and QTL associated with invader traits. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin Heliocidaris erythrogramma. Multiple Displacement Amplification Facilitates SMRT Sequencing of Microscopic Animals and the Genome of the Gastrotrich Lepidodermella squamata (Dujardin, 1841). Convergent evolution associated with the loss of developmental diapause may promote extended lifespan in bees. De Novo Long-Read Genome Assembly and Annotation of the Mosquito Gut-dwelling Fungus, Smittium minutisporum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1