{"title":"MMLmiRLocNet:基于多视角多标签学习的 miRNA 亚细胞定位预测,用于药物设计。","authors":"Tao Bai, Junxi Xie, Yumeng Liu, Bin Liu","doi":"10.1109/JBHI.2024.3483997","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying subcellular localization of microRNAs (miRNAs) is essential for comprehensive understanding of cellular function and has significant implications for drug design. In the past, several computational methods for miRNA subcellular localization is being used for uncovering multiple facets of RNA function to facilitate the biological applications. Unfortunately, most existing classification methods rely on a single sequencebased view, making the effective fusion of data from multiple heterogeneous networks a primary challenge. Inspired by multi-view multi-label learning strategy, we propose a computational method, named MMLmiRLocNet, for predicting the subcellular localizations of miRNAs. The MMLmiRLocNet predictor extracts multi-perspective sequence representations by analyzing lexical, syntactic, and semantic aspects of biological sequences. Specifically, it integrates lexical attributes derived from k-mer physicochemical profiles, syntactic characteristics obtained via word2vec embeddings, and semantic representations generated by pre-trained feature embeddings. Finally, module for extracting multi-view consensus-level features and specific-level features was constructed to capture consensus and specific features from various perspectives. The full connection networks are utilized as the output module to predict the miRNA subcellular localization. Experimental results suggest that MMLmiRLocNet outperforms existing methods in terms of F1, subACC, and Accuracy, and achieves best performance with the help of multi-view consensus features and specific features extract network.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MMLmiRLocNet: miRNA Subcellular Localization Prediction based on Multi-view Multi-label Learning for Drug Design.\",\"authors\":\"Tao Bai, Junxi Xie, Yumeng Liu, Bin Liu\",\"doi\":\"10.1109/JBHI.2024.3483997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying subcellular localization of microRNAs (miRNAs) is essential for comprehensive understanding of cellular function and has significant implications for drug design. In the past, several computational methods for miRNA subcellular localization is being used for uncovering multiple facets of RNA function to facilitate the biological applications. Unfortunately, most existing classification methods rely on a single sequencebased view, making the effective fusion of data from multiple heterogeneous networks a primary challenge. Inspired by multi-view multi-label learning strategy, we propose a computational method, named MMLmiRLocNet, for predicting the subcellular localizations of miRNAs. The MMLmiRLocNet predictor extracts multi-perspective sequence representations by analyzing lexical, syntactic, and semantic aspects of biological sequences. Specifically, it integrates lexical attributes derived from k-mer physicochemical profiles, syntactic characteristics obtained via word2vec embeddings, and semantic representations generated by pre-trained feature embeddings. Finally, module for extracting multi-view consensus-level features and specific-level features was constructed to capture consensus and specific features from various perspectives. The full connection networks are utilized as the output module to predict the miRNA subcellular localization. Experimental results suggest that MMLmiRLocNet outperforms existing methods in terms of F1, subACC, and Accuracy, and achieves best performance with the help of multi-view consensus features and specific features extract network.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3483997\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3483997","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MMLmiRLocNet: miRNA Subcellular Localization Prediction based on Multi-view Multi-label Learning for Drug Design.
Identifying subcellular localization of microRNAs (miRNAs) is essential for comprehensive understanding of cellular function and has significant implications for drug design. In the past, several computational methods for miRNA subcellular localization is being used for uncovering multiple facets of RNA function to facilitate the biological applications. Unfortunately, most existing classification methods rely on a single sequencebased view, making the effective fusion of data from multiple heterogeneous networks a primary challenge. Inspired by multi-view multi-label learning strategy, we propose a computational method, named MMLmiRLocNet, for predicting the subcellular localizations of miRNAs. The MMLmiRLocNet predictor extracts multi-perspective sequence representations by analyzing lexical, syntactic, and semantic aspects of biological sequences. Specifically, it integrates lexical attributes derived from k-mer physicochemical profiles, syntactic characteristics obtained via word2vec embeddings, and semantic representations generated by pre-trained feature embeddings. Finally, module for extracting multi-view consensus-level features and specific-level features was constructed to capture consensus and specific features from various perspectives. The full connection networks are utilized as the output module to predict the miRNA subcellular localization. Experimental results suggest that MMLmiRLocNet outperforms existing methods in terms of F1, subACC, and Accuracy, and achieves best performance with the help of multi-view consensus features and specific features extract network.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.