Bailey M Weiss, Kathleen N Dollman, Jonah N Choiniere, Claire Browning, Jennifer Botha
{"title":"利用同步辐射微计算机断层扫描技术研究 Orthosuchus stormbergi 的骨组织学。","authors":"Bailey M Weiss, Kathleen N Dollman, Jonah N Choiniere, Claire Browning, Jennifer Botha","doi":"10.1111/joa.14166","DOIUrl":null,"url":null,"abstract":"<p><p>Orthosuchus stormbergi was a small-bodied crocodyliform, representative of a diverse assemblage of Early Jurassic, early branching crocodylomorph taxa from the upper Elliot Formation of South Africa. The life history of these early branching taxa remains poorly understood, with only sparse investigations into their osteohistology, yet species like Orthosuchus have potential to inform about the macroevolution of growth strategies on the stem leading to crown crocodilians. In order to elucidate the growth patterns of Orthosuchus, we used propagation phase contrast X-ray synchrotron micro-computed tomography to virtually image the osteohistology of the postcrania of two specimens, including multiple elements from the type (SAM-PK-K409), and the femur of a referred specimen (BP/1/4242). In total, we scanned nine mid-diaphyseal sections of the humerus, radius, ulna, radiale, femur, tibia, fibula, and a rib. We then compared our results to osteohistological sections of crocodylomorph taxa from the published literature. Our results show that the most predominant bone tissue type in Orthosuchus is lamellar, with a few patches of woven and parallel-fibred bone. The type specimen contains four to five lines of arrested growth and the hindlimb elements present outer circumferential lamellae, whereas the referred specimen contains six to seven. Both specimens grew at similar rates, reaching adult skeletal body size at year four or five. The sectioned bones, most notably the radius and ulna, are comparatively thick walled and compact. Our virtual osteohistological sections are one of the first for an early branching crocodyliform, and the broad sample of skeletal elements makes Orthosuchus a key anchor point for understanding the plesiomorphic life history traits of the clade.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The osteohistology of Orthosuchus stormbergi using synchrotron radiation microcomputed tomography.\",\"authors\":\"Bailey M Weiss, Kathleen N Dollman, Jonah N Choiniere, Claire Browning, Jennifer Botha\",\"doi\":\"10.1111/joa.14166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orthosuchus stormbergi was a small-bodied crocodyliform, representative of a diverse assemblage of Early Jurassic, early branching crocodylomorph taxa from the upper Elliot Formation of South Africa. The life history of these early branching taxa remains poorly understood, with only sparse investigations into their osteohistology, yet species like Orthosuchus have potential to inform about the macroevolution of growth strategies on the stem leading to crown crocodilians. In order to elucidate the growth patterns of Orthosuchus, we used propagation phase contrast X-ray synchrotron micro-computed tomography to virtually image the osteohistology of the postcrania of two specimens, including multiple elements from the type (SAM-PK-K409), and the femur of a referred specimen (BP/1/4242). In total, we scanned nine mid-diaphyseal sections of the humerus, radius, ulna, radiale, femur, tibia, fibula, and a rib. We then compared our results to osteohistological sections of crocodylomorph taxa from the published literature. Our results show that the most predominant bone tissue type in Orthosuchus is lamellar, with a few patches of woven and parallel-fibred bone. The type specimen contains four to five lines of arrested growth and the hindlimb elements present outer circumferential lamellae, whereas the referred specimen contains six to seven. Both specimens grew at similar rates, reaching adult skeletal body size at year four or five. The sectioned bones, most notably the radius and ulna, are comparatively thick walled and compact. Our virtual osteohistological sections are one of the first for an early branching crocodyliform, and the broad sample of skeletal elements makes Orthosuchus a key anchor point for understanding the plesiomorphic life history traits of the clade.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14166\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
The osteohistology of Orthosuchus stormbergi using synchrotron radiation microcomputed tomography.
Orthosuchus stormbergi was a small-bodied crocodyliform, representative of a diverse assemblage of Early Jurassic, early branching crocodylomorph taxa from the upper Elliot Formation of South Africa. The life history of these early branching taxa remains poorly understood, with only sparse investigations into their osteohistology, yet species like Orthosuchus have potential to inform about the macroevolution of growth strategies on the stem leading to crown crocodilians. In order to elucidate the growth patterns of Orthosuchus, we used propagation phase contrast X-ray synchrotron micro-computed tomography to virtually image the osteohistology of the postcrania of two specimens, including multiple elements from the type (SAM-PK-K409), and the femur of a referred specimen (BP/1/4242). In total, we scanned nine mid-diaphyseal sections of the humerus, radius, ulna, radiale, femur, tibia, fibula, and a rib. We then compared our results to osteohistological sections of crocodylomorph taxa from the published literature. Our results show that the most predominant bone tissue type in Orthosuchus is lamellar, with a few patches of woven and parallel-fibred bone. The type specimen contains four to five lines of arrested growth and the hindlimb elements present outer circumferential lamellae, whereas the referred specimen contains six to seven. Both specimens grew at similar rates, reaching adult skeletal body size at year four or five. The sectioned bones, most notably the radius and ulna, are comparatively thick walled and compact. Our virtual osteohistological sections are one of the first for an early branching crocodyliform, and the broad sample of skeletal elements makes Orthosuchus a key anchor point for understanding the plesiomorphic life history traits of the clade.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.