Jessica L Sacco, Zachary T Vaneman, Ava Self, Elix Sumner, Stella Kibinda, Chinmay S Sankhe, Esther W Gomez
{"title":"EZH2定位的化学机械调控控制着上皮-间质转化。","authors":"Jessica L Sacco, Zachary T Vaneman, Ava Self, Elix Sumner, Stella Kibinda, Chinmay S Sankhe, Esther W Gomez","doi":"10.1242/jcs.262190","DOIUrl":null,"url":null,"abstract":"<p><p>The methyltransferase enhancer of zeste homolog 2 (EZH2) regulates gene expression and aberrant EZH2 expression and signaling can drive fibrosis and cancer. However, it is not clear how chemical and mechanical signals are integrated to regulate EZH2 and gene expression. We show that culture of cells on stiff matrices in concert with transforming growth factor (TGF)-β1 promotes nuclear localization of EZH2 and an increase in the levels of the corresponding histone modification, H3K27me3, thereby regulating gene expression. EZH2 activity and expression are required for TGFβ1- and stiffness-induced increases in H3K27me3 levels as well as for morphological and gene expression changes associated with epithelial-mesenchymal transition (EMT). Inhibition of Rho associated kinase (ROCK) or myosin II signaling attenuates TGFβ1-induced nuclear localization of EZH2 and decreases H3K27me3 levels in cells cultured on stiff substrata, suggesting that cellular contractility, in concert with a major cancer signaling regulator TGFβ1, modulates EZH2 subcellular localization. These findings provide a contractility-dependent mechanism by which matrix stiffness and TGFβ1 together mediate EZH2 signaling to promote EMT.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemomechanical regulation of EZH2 localization controls epithelial-mesenchymal transition.\",\"authors\":\"Jessica L Sacco, Zachary T Vaneman, Ava Self, Elix Sumner, Stella Kibinda, Chinmay S Sankhe, Esther W Gomez\",\"doi\":\"10.1242/jcs.262190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The methyltransferase enhancer of zeste homolog 2 (EZH2) regulates gene expression and aberrant EZH2 expression and signaling can drive fibrosis and cancer. However, it is not clear how chemical and mechanical signals are integrated to regulate EZH2 and gene expression. We show that culture of cells on stiff matrices in concert with transforming growth factor (TGF)-β1 promotes nuclear localization of EZH2 and an increase in the levels of the corresponding histone modification, H3K27me3, thereby regulating gene expression. EZH2 activity and expression are required for TGFβ1- and stiffness-induced increases in H3K27me3 levels as well as for morphological and gene expression changes associated with epithelial-mesenchymal transition (EMT). Inhibition of Rho associated kinase (ROCK) or myosin II signaling attenuates TGFβ1-induced nuclear localization of EZH2 and decreases H3K27me3 levels in cells cultured on stiff substrata, suggesting that cellular contractility, in concert with a major cancer signaling regulator TGFβ1, modulates EZH2 subcellular localization. These findings provide a contractility-dependent mechanism by which matrix stiffness and TGFβ1 together mediate EZH2 signaling to promote EMT.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.262190\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262190","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Chemomechanical regulation of EZH2 localization controls epithelial-mesenchymal transition.
The methyltransferase enhancer of zeste homolog 2 (EZH2) regulates gene expression and aberrant EZH2 expression and signaling can drive fibrosis and cancer. However, it is not clear how chemical and mechanical signals are integrated to regulate EZH2 and gene expression. We show that culture of cells on stiff matrices in concert with transforming growth factor (TGF)-β1 promotes nuclear localization of EZH2 and an increase in the levels of the corresponding histone modification, H3K27me3, thereby regulating gene expression. EZH2 activity and expression are required for TGFβ1- and stiffness-induced increases in H3K27me3 levels as well as for morphological and gene expression changes associated with epithelial-mesenchymal transition (EMT). Inhibition of Rho associated kinase (ROCK) or myosin II signaling attenuates TGFβ1-induced nuclear localization of EZH2 and decreases H3K27me3 levels in cells cultured on stiff substrata, suggesting that cellular contractility, in concert with a major cancer signaling regulator TGFβ1, modulates EZH2 subcellular localization. These findings provide a contractility-dependent mechanism by which matrix stiffness and TGFβ1 together mediate EZH2 signaling to promote EMT.