{"title":"对等电子原子近似二次方能量的炼金术见解。","authors":"Simon León Krug, O Anatole von Lilienfeld","doi":"10.1063/5.0225865","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate quantum mechanics based predictions of property trends are so important for material design and discovery that even inexpensive approximate methods are valuable. We use the alchemical integral transform to study multi-electron atoms and to gain a better understanding of the approximately quadratic behavior of energy differences between iso-electronic atoms in their nuclear charges. Based on this, we arrive at the following simple analytical estimate of energy differences between any two iso-electronic atoms, ΔE≈-(1+2γNe-1)ΔZZ̄. Here, γ ≈ 0.3766 ± 0.0020 Ha corresponds to an empirical constant, and Ne, ΔZ, and Z̄, respectively, to electron number, nuclear charge difference, and average. We compare the formula's predictive accuracy using experimental numbers and non-relativistic, numerical results obtained via density functional theory (pbe0) for the entire periodic table up to Radon. A detailed discussion of the atomic helium-series is included.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alchemical insights into approximately quadratic energies of iso-electronic atoms.\",\"authors\":\"Simon León Krug, O Anatole von Lilienfeld\",\"doi\":\"10.1063/5.0225865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate quantum mechanics based predictions of property trends are so important for material design and discovery that even inexpensive approximate methods are valuable. We use the alchemical integral transform to study multi-electron atoms and to gain a better understanding of the approximately quadratic behavior of energy differences between iso-electronic atoms in their nuclear charges. Based on this, we arrive at the following simple analytical estimate of energy differences between any two iso-electronic atoms, ΔE≈-(1+2γNe-1)ΔZZ̄. Here, γ ≈ 0.3766 ± 0.0020 Ha corresponds to an empirical constant, and Ne, ΔZ, and Z̄, respectively, to electron number, nuclear charge difference, and average. We compare the formula's predictive accuracy using experimental numbers and non-relativistic, numerical results obtained via density functional theory (pbe0) for the entire periodic table up to Radon. A detailed discussion of the atomic helium-series is included.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0225865\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0225865","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
基于量子力学的精确性质趋势预测对于材料设计和发现非常重要,因此即使是廉价的近似方法也很有价值。我们使用炼金积分变换来研究多电子原子,并更好地理解等电子原子核电荷之间能量差的近似二次方行为。在此基础上,我们对任意两个等电子原子之间的能量差进行了如下简单的分析估计:ΔE≈-(1+2γNe-1)ΔZZ̄。这里,γ ≈ 0.3766 ± 0.0020 Ha 对应于经验常数,Ne、ΔZ 和 Z̄ 分别对应于电子数、核电荷差和平均值。我们使用实验数据和通过密度泛函理论(pbe0)获得的非相对论数值结果比较了该公式对整个元素周期表(直至氡)的预测准确性。其中还包括对原子氦系列的详细讨论。
Alchemical insights into approximately quadratic energies of iso-electronic atoms.
Accurate quantum mechanics based predictions of property trends are so important for material design and discovery that even inexpensive approximate methods are valuable. We use the alchemical integral transform to study multi-electron atoms and to gain a better understanding of the approximately quadratic behavior of energy differences between iso-electronic atoms in their nuclear charges. Based on this, we arrive at the following simple analytical estimate of energy differences between any two iso-electronic atoms, ΔE≈-(1+2γNe-1)ΔZZ̄. Here, γ ≈ 0.3766 ± 0.0020 Ha corresponds to an empirical constant, and Ne, ΔZ, and Z̄, respectively, to electron number, nuclear charge difference, and average. We compare the formula's predictive accuracy using experimental numbers and non-relativistic, numerical results obtained via density functional theory (pbe0) for the entire periodic table up to Radon. A detailed discussion of the atomic helium-series is included.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.