Thamires Santos-Silva, Inácio Silva Viana, Andrea Barros Piazzon S Queiroz, Fabrício Singaretti de Oliveira, Bianca de Oliveira Horvath-Pereira, Leandro Norberto da Silva-Júnior, Michelle Silva Araujo, Paulo Alescio Canola, Luís Gustavo Gosuen G Dias, Marcelo Melo Soares, Maria Angelica Miglino
{"title":"填充了犬胎盘水凝胶和间充质干细胞的 PLLA/GO 支架用于山羊下颌骨的骨修复。","authors":"Thamires Santos-Silva, Inácio Silva Viana, Andrea Barros Piazzon S Queiroz, Fabrício Singaretti de Oliveira, Bianca de Oliveira Horvath-Pereira, Leandro Norberto da Silva-Júnior, Michelle Silva Araujo, Paulo Alescio Canola, Luís Gustavo Gosuen G Dias, Marcelo Melo Soares, Maria Angelica Miglino","doi":"10.3390/jfb15100311","DOIUrl":null,"url":null,"abstract":"<p><p>Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508647/pdf/","citationCount":"0","resultStr":"{\"title\":\"PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles.\",\"authors\":\"Thamires Santos-Silva, Inácio Silva Viana, Andrea Barros Piazzon S Queiroz, Fabrício Singaretti de Oliveira, Bianca de Oliveira Horvath-Pereira, Leandro Norberto da Silva-Júnior, Michelle Silva Araujo, Paulo Alescio Canola, Luís Gustavo Gosuen G Dias, Marcelo Melo Soares, Maria Angelica Miglino\",\"doi\":\"10.3390/jfb15100311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15100311\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15100311","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles.
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.