Alejandro Jerónimo, Olga Valenzuela, Ignacio Rojas
{"title":"用于肺结节分段的 nnU-Net 模型统计分析","authors":"Alejandro Jerónimo, Olga Valenzuela, Ignacio Rojas","doi":"10.3390/jpm14101016","DOIUrl":null,"url":null,"abstract":"<p><p>This paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"14 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Statistical Analysis of nnU-Net Models for Lung Nodule Segmentation.\",\"authors\":\"Alejandro Jerónimo, Olga Valenzuela, Ignacio Rojas\",\"doi\":\"10.3390/jpm14101016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm14101016\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm14101016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Statistical Analysis of nnU-Net Models for Lung Nodule Segmentation.
This paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.