用于肺结节分段的 nnU-Net 模型统计分析

IF 3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES Journal of Personalized Medicine Pub Date : 2024-09-24 DOI:10.3390/jpm14101016
Alejandro Jerónimo, Olga Valenzuela, Ignacio Rojas
{"title":"用于肺结节分段的 nnU-Net 模型统计分析","authors":"Alejandro Jerónimo, Olga Valenzuela, Ignacio Rojas","doi":"10.3390/jpm14101016","DOIUrl":null,"url":null,"abstract":"<p><p>This paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"14 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Statistical Analysis of nnU-Net Models for Lung Nodule Segmentation.\",\"authors\":\"Alejandro Jerónimo, Olga Valenzuela, Ignacio Rojas\",\"doi\":\"10.3390/jpm14101016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm14101016\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm14101016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在对 nnU-Net 模型的不同组件进行统计分析,以建立计算机断层扫描图像(CT 扫描)中肺结节分割的最佳管道。本研究的重点是使用 UniToChest 数据集对肺结节进行语义分割。我们的方法基于 nnU-Net 框架,旨在配置整个分割管道,从而避免了许多复杂的设计选择,如数据属性和架构配置。虽然这些框架结果提供了一个良好的起点,但这个问题中的许多配置都可以优化。在本研究中,我们使用不同的预处理技术测试了两种基于 U-Net 的架构,并修改了 nnU-Net 提供的现有超参数。为了研究不同设置对模型分割准确性的影响,我们进行了方差分析(ANOVA)统计分析。研究的因素包括根据结节直径大小划分的数据集、模型、预处理、多项式学习率调度器和历元数。方差分析结果表明,数据集、模型和预处理之间存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Analysis of nnU-Net Models for Lung Nodule Segmentation.

This paper aims to conduct a statistical analysis of different components of nnU-Net models to build an optimal pipeline for lung nodule segmentation in computed tomography images (CT scan). This study focuses on semantic segmentation of lung nodules, using the UniToChest dataset. Our approach is based on the nnU-Net framework and is designed to configure a whole segmentation pipeline, thereby avoiding many complex design choices, such as data properties and architecture configuration. Although these framework results provide a good starting point, many configurations in this problem can be optimized. In this study, we tested two U-Net-based architectures, using different preprocessing techniques, and we modified the existing hyperparameters provided by nnU-Net. To study the impact of different settings on model segmentation accuracy, we conducted an analysis of variance (ANOVA) statistical analysis. The factors studied included the datasets according to nodule diameter size, model, preprocessing, polynomial learning rate scheduler, and number of epochs. The results of the ANOVA analysis revealed significant differences in the datasets, models, and preprocessing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Personalized Medicine
Journal of Personalized Medicine Medicine-Medicine (miscellaneous)
CiteScore
4.10
自引率
0.00%
发文量
1878
审稿时长
11 weeks
期刊介绍: Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.
期刊最新文献
Electrophysiologic Considerations in Adult Patients with Ebstein's Anomaly. Exploring the Structural and Functional Consequences of Deleterious Missense Nonsynonymous SNPs in the EPOR Gene: A Computational Approach. The Effects of Mepolizumab on CRSwNP: Real-Life Evidence. Clinical Implication of Brain Metastases En-Bloc Resection: Surgical Technique Description and Literature Review. Limits in the Perception of Facial Symmetry-A Prospective Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1